scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Repayment of O2 debt and resynthesis of high-energy phosphates in gastrocnemius muscle of the dog.

01 May 1970-Journal of Applied Physiology (J Appl Physiol)-Vol. 28, Iss: 5, pp 657-662
About: This article is published in Journal of Applied Physiology.The article was published on 1970-05-01. It has received 95 citations till now. The article focuses on the topics: Gastrocnemius muscle.
Citations
More filters
Journal ArticleDOI
TL;DR: The literature suggests that aerobic fitness enhances recovery from high intensity intermittent exercise through increased aerobic response, improved lactate removal and enhanced PCr regeneration.
Abstract: A strong relationship between aerobic fitness and the aerobic response to repeated bouts of high intensity exercise has been established, suggesting that aerobic fitness is important in determining the magnitude of the oxidative response. The elevation of exercise oxygen consumption (VO2) is at least partially responsible for the larger fast component of excess post-exercise oxygen consumption (EPOC) seen in endurance-trained athletes following intense intermittent exercise. Replenishment of phosphocreatine (PCr) has been linked to both fast EPOC and power recovery in repeated efforts. Although 31P magnetic resonance spectroscopy studies appear to support a relationship between endurance training and PCr recovery following both submaximal work and repeated bouts of moderate intensity exercise, PCr resynthesis following single bouts of high intensity effort does not always correlate well with maximal oxygen consumption (VO2max). It appears that intense exercise involving larger muscle mass displays a stronger relationship between VO2max and PCr resynthesis than does intense exercise utilising small muscle mass. A strong relationship between power recovery and endurance fitness, as measured by the percentage VO2max corresponding to a blood lactate concentration of 4 mmol/L, has been demonstrated. The results from most studies examining power recovery and VO2max seem to suggest that endurance training and/or a higher VO2max results in superior power recovery across repeated bouts of high intensity intermittent exercise. Some studies have supported an association between aerobic fitness and lactate removal following high intensity exercise, whereas others have failed to confirm an association. Unfortunately, all studies have relied on measurements of blood lactate to reflect muscle lactate clearance, and different mathematical methods have been used for assessing blood lactate clearance, which may compromise conclusions on lactate removal. In summary, the literature suggests that aerobic fitness enhances recovery from high intensity intermittent exercise through increased aerobic response, improved lactate removal and enhanced PCr regeneration.

577 citations


Cites background from "Repayment of O2 debt and resynthesi..."

  • ...As well, ATP/PCr stores in trained individuals tend to be higher[39] and since PCr replenishment has been coupled to fast EPOC,[4,53] it is not surprising that fast EPOC following submaximal exercise of the same relative intensity is demonstrably higher in endurance-trained individuals....

    [...]

Journal ArticleDOI
TL;DR: The data suggest that a dietary-induced increase in muscle total Cr concentration can increase PCr resynthesis during the 2nd min of recovery from intense contraction.
Abstract: Biopsy samples were obtained from the vastus lateralis muscle of eight subjects after 0, 20, 60, and 120 s of recovery from intense electrically evoked isometric contraction. Later (10 days), the same procedures were performed using the other leg, but subjects ingested 20 g creatine (Cr)/day for the preceding 5 days. Muscle ATP, phosphocreatine (PCr), free Cr, and lactate concentrations were measured, and total Cr was calculated as the sum of PCr and free Cr concentrations. In five of the eight subjects, Cr ingestion substantially increased muscle total Cr concentration (mean 29 +/- 3 mmol/kg dry matter, 25 +/- 3%; range 19-35 mmol/kg dry matter, 15-32%) and PCr resynthesis during recovery (mean 19 +/- 4 mmol/kg dry matter, 35 +/- 6%; range 11-28 mmol/kg dry matter, 23-53%). In the remaining three subjects, Cr ingestion had little effect on muscle total Cr concentration, producing increases of 8-9 mmol/kg dry matter (5-7%), and did not increase PCr resynthesis. The data suggest that a dietary-induced increase in muscle total Cr concentration can increase PCr resynthesis during the 2nd min of recovery from intense contraction.

559 citations

Journal ArticleDOI
TL;DR: Occlusion of the circulation to the quadriceps completely abolished the resynthesis of PC and Restoration of resynthesis occurred only after release of occlusion.
Abstract: The time course of phosphorylcreatine (PC) resynthesis in the human m. quadriceps femoris was studied during recovery from exhaustive dynamic exercise and from isometric contraction sustained to fatigue. The immediate postexercise muscle PC content after either form of exercise was 15-16% of the resting muscle content. The time course of PC resynthesis during recovery was biphasic exhibiting a fast and slow recovery component. The half-time for the fast component was 21-22s but this accounted for a smaller fraction of the total PC restored during recovery from the isometric contraction than after the dynamic exercise. The half-time for the slow component was in each case more than 170 s. After 2 and 4 min recovery the total amount of PC resynthesized after the isometric exercise were significantly lower than from the dynamic exercise. Occlusion of the circulation of the quadriceps completely abolished the resynthesis of PC. Restoration of resynthesis occurred only after release of occlusion.

456 citations

Journal ArticleDOI
TL;DR: The τ values of the fundamental component of [PCr] and V̇O2 dynamics cohere to within 10 %, during both the on‐ and off‐transients to a constant‐load work rate of both moderate‐ and high‐intensity exercise.
Abstract: The on- and off-transient (ie phase II) responses of pulmonary oxygen uptake (V(O(2))) to moderate-intensity exercise (ie below the lactate threshold, theta;(L)) in humans has been shown to conform to both mono-exponentiality and 'on-off' symmetry, consistent with a system manifesting linear control dynamics However above theta;(L) the V(O(2)) kinetics have been shown to be more complex: during high-intensity exercise neither mono-exponentiality nor 'on-off' symmetry have been shown to appropriately characterise the V(O(2)) response Muscle [phosphocreatine] ([PCr]) responses to exercise, however, have been proposed to be dynamically linear with respect to work rate, and to demonstrate 'on-off' symmetry at all work intenisties We were therefore interested in examining the kinetic characteristics of the V(O(2)) and [PCr] responses to moderate- and high-intensity knee-extensor exercise in order to improve our understanding of the factors involved in the putative phosphate-linked control of muscle oxygen consumption We estimated the dynamics of intramuscular [PCr] simultaneously with those of V(O(2)) in nine healthy males who performed repeated bouts of both moderate- and high-intensity square-wave, knee-extension exercise for 6 min, inside a whole-body magnetic resonance spectroscopy (MRS) system A transmit-receive surface coil placed under the right quadriceps muscle allowed estimation of intramuscular [PCr]; V(O(2)) was measured breath-by-breath using a custom-designed turbine and a mass spectrometer system For moderate exercise, the kinetics were well described by a simple mono-exponential function (following a short cardiodynamic phase for V(O(2))), with time constants (tau) averaging: tauV(O(2))(,on) 35 +/- 14 s (+/- SD), tau[PCr](on) 33 +/- 12 s, tauV(O(2))(,off) 50 +/- 13 s and tau[PCr](off) 51 +/- 13 s The kinetics for both V(O(2)) and [PCr] were more complex for high-intensity exercise The fundamental phase expressing average tau values of tauV(O(2))(,on) 39 +/- 4 s, tau[PCr](on) 38 +/- 11 s, tauV(O(2))(,off) 51 +/- 6 s and tau[PCr](off) 47 +/- 11 s An associated slow component was expressed in the on-transient only for both V(O(2)) and [PCr], and averaged 153 +/- 54 and 139 +/- 91 % of the fundamental amplitudes for V(O(2)) and [PCr], respectively In conclusion, the tau values of the fundamental component of [PCr] and V(O(2)) dynamics cohere to within 10 %, during both the on- and off-transients to a constant-load work rate of both moderate- and high-intensity exercise On average, approximately 90 % of the magnitude of the V(O(2)) slow component during high-intensity exercise is reflected within the exercising muscle by its [PCr] response

378 citations