scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Report on recent results of the PERCIVAL soft X-ray imager

TL;DR: The PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large) soft X-ray 2D imaging detector is based on stitched, wafer-scale sensors possessing a thick epi-layer, which together with back-thinning and back-side illumination yields elevated quantum efficiency in the photon energy range of 125-1000 eV.
Abstract: The PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large) soft X-ray 2D imaging detector is based on stitched, wafer-scale sensors possessing a thick epi-layer, which together with back-thinning and back-side illumination yields elevated quantum efficiency in the photon energy range of 125–1000 eV. Main application fields of PERCIVAL are foreseen in photon science with FELs and synchrotron radiation. This requires high dynamic range up to 105 ph @ 250 eV paired with single photon sensitivity with high confidence at moderate frame rates in the range of 10–120 Hz. These figures imply the availability of dynamic gain switching on a pixel-by-pixel basis and a highly parallel, low noise analog and digital readout, which has been realized in the PERCIVAL sensor layout. Different aspects of the detector performance have been assessed using prototype sensors with different pixel and ADC types. This work will report on the recent test results performed on the newest chip prototypes with the improved pixel and ADC architecture. For the target frame rates in the 10–120 Hz range an average noise floor of 14e− has been determined, indicating the ability of detecting single photons with energies above 250 eV. Owing to the successfully implemented adaptive 3-stage multiple-gain switching, the integrated charge level exceeds 4 10^6 e− or 57000 X-ray photons at 250 eV per frame at 120 Hz. For all gains the noise level remains below the Poisson limit also in high-flux conditions. Additionally, a short overview over the updates on an oncoming 2 Mpixel (P2M) detector system (expected at the end of 2016) will be reported.
Citations
More filters
Journal ArticleDOI
TL;DR: Partially coherent soft X-ray synchrotron radiation is used to obtain a quantitative image of a laterally extended, dried, and unstained fibroblast cell by ptychography and the refractive index values for two regions of the cell with respect to a reference area are obtained.
Abstract: Coherent X-ray ptychography is a tool for highly dose efficient lensless nano-imaging of biological samples. We have used partially coherent soft X-ray synchrotron radiation to obtain a quantitative image of a laterally extended, dried, and unstained fibroblast cell by ptychography. We used data with and without a beam stop that allowed us to measure coherent diffraction with a high-dynamic range of 1.7·106. As a quantitative result, we obtained the refractive index values for two regions of the cell with respect to a reference area. Due to the photon energy in the water window we obtained an extremely high contrast of 53% at 71 nm half-period resolution. The dose applied in our experiment was 9.5·104 Gy and is well below the radiation damage threshold. The concept for dynamic range improvement for low dynamic range detectors with a beam stop opens the path for high resolution nano-imaging of a variety of samples including cryo-preserved, hydrated and unstained biological cells.

26 citations

Journal ArticleDOI
TL;DR: The capabilities and performance of a camera equipped with a newly commercialized backside-illuminated scientific CMOS (sCMOS-BSI) sensor, integrated in a vacuum environment, for soft X-ray experiments at synchrotron sources are described.
Abstract: Huge progress have been done with the 3 rd generation storage ring, and more recently the ultimate storage ring under development suggest an unprecedent increase of x-ray brightness. Unfortunately, as far as the detectors are concerned, progress has not been as fast and even more so in the range of soft x-rays. In particular for 2D detector the most commonly used detector are based on old CCD technology and the recent development of CMOS detector will be certainly crucial for 2D detector in the soft x-rays. With this goal we explore the possibilities and the the performance of a camera equipped with new mass-marketed scientific Complementary Metal Oxide Semiconductor Back Side Illuminated (sCMOS-BSI) integrated in vacuum environment for soft X-ray experiment at synchrotron. The 4 Mpix sensor reaches a frame rate up to 48 fps while suiting the necessary performances needed for X-ray experiments, in term of linearity (98 %), homogeneity (PRNU <1%) charge capacity (up to 80 ke-), readout noise (down to 2 e-rms) and adequate dark current (3 e-/s/px). The sensor performances tests in the X-ray range have been performed at the SOLEIL METROLOGIE beamline. The Quantum Efficiency, the spatial resolution (24 lp/mm), the energy resolution (< 100 eV) and the radiation damage versus the X-ray dose (< 200 Gy) have been evaluated in the energy range from 40 eV to 2000 eV. In order to illustrate the capabilities of this new sCMOS-BSI sensor, several experiments have been performed at three soft x-ray beamline of the SOLEIL synchrotron: diffraction pattern from a pinhole at 186 eV, scattering experiment from nanostructured Co/Cu multilayer at 700 eV and Ptychoraphy imaging in transmission at 706 eV.

24 citations


Cites background from "Report on recent results of the PER..."

  • ...The figure 2 shows an example of the SNR for a X-ray beam of 500 eV and its comparison with published results on others sensors, i.e. a back illuminated CCD (PIMTE2048B camera on https://www.princetoninstruments.com) and the PERCIVAL detector (Khromova et al, 2016)....

    [...]

  • ...Detector PI-MTE CCD BSI (datasheet PIMTE2048B) [http://www.princeton.c om] PERCIVAL (BSI) (Khromova et al, 2016) GSENSE400BSI (Desjardins et al, 2019) Pixel size 13.5 x 13.5 µm² 27 x 27 µm² 11 x 11 µm² temporal noise shot noise spatial noise QE (500 eV) 0.85 ~ 0.8 (unpublished) 0.5 up to 0.8 (see…...

    [...]

Journal ArticleDOI
TL;DR: The back-side-illuminated Percival 2-Megapixel (P2M) detector is presented, along with its characterization by means of optical and X-ray photons, and for the first time the response of the system to soft X-rays is presented.
Abstract: In this paper the back-side-illuminated Percival 2-Megapixel (P2M) detector is presented, along with its characterization by means of optical and X-ray photons. For the first time, the response of the system to soft X-rays (250 eV to 1 keV) is presented. The main performance parameters of the first detector are measured, assessing the capabilities in terms of noise, dynamic range and single-photon discrimination capability. Present limitations and coming improvements are discussed.

9 citations

Journal ArticleDOI
TL;DR: The PERCIVAL soft X-ray imager is being developed by DESY, RAL, Elettra, DLS, and PAL to address the challenges at high brilliance Light Sources such as new-generation Synchrotrons and Free Electro...
Abstract: The PERCIVAL soft X-ray imager is being developed by DESY, RAL, Elettra, DLS, and PAL to address the challenges at high brilliance Light Sources such as new-generation Synchrotrons and Free Electro ...

8 citations

Journal ArticleDOI
TL;DR: The peak brilliance reached by today's Free-Electron Laser and Synchrotron light sources requires photon detectors matching their output intensity and other characteristics in order to fully realiz...
Abstract: The peak brilliance reached by today's Free-Electron Laser and Synchrotron light sources requires photon detectors matching their output intensity and other characteristics in order to fully realiz ...

7 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the Max Planck Advanced Study Group (ASG) within the Center for Free Electron Laser Science (CFEL) has designed the CFEL-ASG MultiPurpose (CAMP) chamber.
Abstract: Fourth generation accelerator-based light sources, such as VUV and X-ray Free Electron Lasers (FEL), deliver ultra-brilliant (∼1012–1013 photons per bunch) coherent radiation in femtosecond (∼10–100 fs) pulses and, thus, require novel focal plane instrumentation in order to fully exploit their unique capabilities. As an additional challenge for detection devices, existing (FLASH, Hamburg) and future FELs (LCLS, Menlo Park; SCSS, Hyogo and the European XFEL, Hamburg) cover a broad range of photon energies from the EUV to the X-ray regime with significantly different bandwidths and pulse structures reaching up to MHz micro-bunch repetition rates. Moreover, hundreds up to trillions of fragment particles, ions, electrons or scattered photons can emerge when a single light flash impinges on matter with intensities up to 1022 W/cm2. In order to meet these challenges, the Max Planck Advanced Study Group (ASG) within the Center for Free Electron Laser Science (CFEL) has designed the CFEL-ASG MultiPurpose (CAMP) chamber. It is equipped with specially developed photon and charged particle detection devices dedicated to cover large solid-angles. A variety of different targets are supported, such as atomic, (aligned) molecular and cluster jets, particle injectors for bio-samples or fixed target arrangements. CAMP houses 4π solid-angle ion and electron momentum imaging spectrometers (“reaction microscope”, REMI, or “velocity map imaging”, VMI) in a unique combination with novel, large-area, broadband (50 eV–25 keV), high-dynamic-range, single-photon-counting and imaging X-ray detectors based on the pnCCDs. This instrumentation allows a new class of coherent diffraction experiments in which both electron and ion emission from the target may be simultaneously monitored. This permits the investigation of dynamic processes in this new regime of ultra-intense, high-energy radiation—matter interaction. After an introduction into the salient features of the CAMP chamber and the properties of the redesigned REMI/VMI spectrometers, the new 1024×1024 pixel format pnCCD imaging detector system will be described in detail. Results of tests of four smaller format (256×512) devices of identical performance, conducted at FLASH and BESSY, will be presented and the concept as well as the anticipated properties of the full, large-scale system will be elucidated. The data obtained at both radiation sources illustrate the unprecedented performance of the X-ray detectors, which have a voxel size of 75×75×450 μm3 and a typical read-out noise of 2.5 electrons (rms) at an operating temperature of −50 °C.

305 citations

Journal ArticleDOI
01 Oct 2011
TL;DR: The DSSC instrument as mentioned in this paper is based on a silicon pixel sensor with a DEPFET as a central amplifier structure and has detection efficiency close to 100% for X-rays from 0.5 keV up to 10 keV.
Abstract: We present the development of the DSSC instrument: an ultra-high speed detector system for the new European XFEL in Hamburg. The DSSC will be able to record X-ray images with a maximum frame rate of 4.5 MHz. The system is based on a silicon pixel sensor with a DEPFET as a central amplifier structure and has detection efficiency close to 100% for X-rays from 0.5 keV up to 10 keV. The sensor will have a size of approximately 210 × 210 mm composed of 1024 × 1024 pixels with hexagonal shape. Two hundred fifty six mixed signal readout ASICs are bump-bonded to the detector. They are designed in 130 nm CMOS technology and provide full parallel readout. The signals coming from the sensor are processed by an analog filter, immediately digitized by 8-bit ADCs and locally stored in an SRAM, which is able to record at least 640 frames. In order to fit the dynamic range of about 104 photons of 1 keV per pixel into a reasonable output signal range, achieving at the same time single 1 keV photon resolution, a non-linear characteristic is required. The proposed DEPFET provides the needed dynamic range compression at the sensor level. The most exciting and challenging property is that the single 1 keV photon resolution and the high dynamic range are accomplished within the 220 ns frame rate of the system. The key properties and the main design concepts of the different building blocks of the system are discussed. Measurements with the analog front-end of the readout ASIC and a standard DEPFET have already shown a very low noise which makes it possible to achieve the targeted single photon resolution for 1 keV photons at 4.5 MHz and also for 0.5 keV photons at half of the speed. In the paper the new experimental results obtained coupling a single pixel to an 8 × 8 ASIC prototype are shown. This 8 × 8 ASIC comprises the complete readout chain from the analog front-end to the ADC and the memory. The characterization of a newly fabricated non-linear DEPFET is presented for the first time.

103 citations

Journal ArticleDOI
TL;DR: In this article, a monolithic pixel detector with 0.2 μm silicon-on-insulator (SOI) technology has been developed, which has both a thick high-resistivity sensor layer and thin LSI circuit layer on a single chip.
Abstract: A monolithic pixel detector with 0.2 μ m silicon-on-insulator (SOI) CMOS technology has been developed. It has both a thick high-resistivity sensor layer and thin LSI circuit layer on a single chip. Integration-type and counting-type pixel detectors are fabricated and tested with light and X-rays. The process is open to many researchers through Multi Project Wafer (MPW) runs operated by KEK. Further improvements of the fabrication technologies are also under investigation by using a buried p-well and 3D integration technologies.

46 citations

Journal ArticleDOI
TL;DR: PERCIVAL as mentioned in this paper is a monolithic active pixel sensor (MAPS) based on CMOS technology, which can operate at frame rates up to 120 Hz and use multiple gains within its 27 μm pixels to measure (e.g. at 500 eV) 1 to 105 simultaneously arriving photons.
Abstract: With the increased brilliance of state-of-the-art Synchrotron radiation sources and the advent of Free Electron Lasers enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon counting capability with low probability of false positives, and (multi)-megapixels. PERCIVAL (``Pixelated Energy Resolving CMOS Imager, Versatile and Large'') is currently being developed by a collaboration of DESY, RAL, Elettra and DLS to address this need for the soft X-ray regime. PERCIVAL is a monolithic active pixel sensor (MAPS), i.e. based on CMOS technology. It will be back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to its preliminary specifications, the roughly 10 × 10 cm2, 3520 × 3710 pixel monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within its 27 μm pixels to measure (e.g. at 500 eV) 1 to ~ 105 simultaneously-arriving photons. Currently, small-scale front-illuminated prototype systems (160 × 210 pixels) are undergoing detailed testing with visible-light as well as X-ray photons.

31 citations

Journal ArticleDOI
TL;DR: The Percival (Pixellated Energy Resolving CMOS Imager, Versatile And Large) as mentioned in this paper was developed by a collaboration of DESY, Rutherford Appleton Laboratory (RAL), Elettra, and Diamond Light.
Abstract: Over the last decade, synchrotron radiation sources have seen a significant increase in brilliance, and the advent of free electron lasers has made entire new research fields accessible to investigations with X-rays. These advances in light source capabilities have resulted not only in a host of scientific advances and discoveries, but also in a need for a new generation of X-ray imaging detectors that can match the sources' capabilities in terms of frame rate and image dynamic range while recording image information with fine granularity over a large – preferably uninterrupted – (multi)megapixel area with single-photon sensitivity. Developing such next-generation imagers is both costly and time-consuming, and the requirements at many photon science facilities are similar enough to invite a collaborative effort. The Percival (“Pixellated Energy Resolving CMOS Imager, Versatile And Large”) imager is being developed by a collaboration of DESY, Rutherford Appleton Laboratory (RAL), Elettra, and Diamond Light...

12 citations

Related Papers (5)