scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53

09 Nov 1995-Nature (Nature Publishing Group)-Vol. 378, Iss: 6553, pp 203-206
TL;DR: Rescue of the mdm2−/− lethality in a p53 null background suggests that a critical in vivo function of MDM2 is the negative regulation of p53 activity.
Abstract: The gene p53 encodes a transcriptional activator of genes involved in growth arrest, DNA repair and apoptosis. Loss of p53 function contributes to tumour development in vivo. The transcriptional activation function of p53 is inactivated by interaction with the mdm2 gene product. Amplification of mdm2 has been observed in 36% of human sarcomas, indicating that it may represent an alternative mechanism of preventing p53 function in tumour development. To study mdm2 function in vivo, we generated an mdm2 null allele by homologous recombination. Mdm2 null mice are not viable, and further analysis revealed embryonic lethality around implantation. To examine the importance of the interaction of MDM2 with p53 in vivo, we crossed mice heterozygous for mdm2 and p53 and obtained progeny homozygous for both p53 and mdm2 null alleles. Rescue of the mdm2-/- lethality in a p53 null background suggests that a critical in vivo function of MDM2 is the negative regulation of p53 activity.
Citations
More filters
Journal ArticleDOI
07 Feb 1997-Cell
TL;DR: The author regrets the lack of citations for many important observations mentioned in the text, but their omission is made necessary by restrictions in the preparation of review manuscripts.

7,653 citations


Cites background from "Rescue of early embryonic lethality..."

  • ...…(Rb) is the major target of cyclin D1–Cdk4negative regulator of p53, mouse fetuses are aborted for cell cycle regulation and is also present in a mutant just after implantation, in a p53-dependent fashion form in a number of cancers (such as small-cell lung (Montes de Oca Luna et al., 1995)....

    [...]

Journal ArticleDOI
15 May 1997-Nature
TL;DR: It is proposed that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.
Abstract: The p53 tumour-suppressor protein exerts antiproliferative effects, including growth arrest and apoptosis, in response to various types of stress. The activity of p53 is abrogated by mutations that occur frequently in tumours, as well as by several viral and cellular proteins. The Mdm2 oncoprotein is a potent inhibitor of p53. Mdm2 binds the transcriptional activation domain of p53 and blocks its ability to regulate target genes and to exert antiproliferative effects. On the other hand, p53 activates the expression of the mdm2 gene in an autoregulatory feedback loop. The interval between p53 activation and consequent Mdm2 accumulation defines a time window during which p53 exerts its effects. We now report that Mdm2 also promotes the rapid degradation of p53 under conditions in which p53 is otherwise stabilized. This effect of Mdm2 requires binding of p53; moreover, a small domain of p53, encompassing the Mdm2-binding site, confers Mdm2-dependent detstabilization upon heterologous proteins. Raised amounts of Mdm2 strongly repress mutant p53 accumulation in tumour-derived cells. During recovery from DNA damage, maximal Mdm2 induction coincides with rapid p53 loss. We propose that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.

4,311 citations

Journal ArticleDOI
15 May 1997-Nature
TL;DR: It is shown that interaction with Mdm2 can also result in a large reduction in p53 protein levels through enhanced proteasome-dependent degradation, which may contribute to the maintenance of low p53 concentrations in normal cells.
Abstract: The tumour-suppressor p53 is a short-lived protein that is maintained at low, often undetectable, levels in normal cells. Stabilization of the protein in response to an activating signal, such as DNA damage, results in a rapid rise in p53 levels and subsequent inhibition of cell growth. Tight regulation of p53 function is critical for normal cell growth and development, and one mechanism by which p53 function is controlled is through interaction with the Mdm2 protein. Mdm2 inhibits p53 cell-cycle arrest and apoptic functions and we show here that interaction with Mdm2 can also result in a large reduction in p53 protein levels through enhanced proteasome-dependent degradation. Endogenous levels of Mdm2 are sufficient to regulate p53 stability, and overexpression of Mdm2 can reduce the amount of endogenous p53. Because mdm2 is transcriptionally activated by p53, this degradative pathway may contribute to the maintenance of low p53 concentrations in normal cells. Furthermore, mechanisms regulating the Mdm2-induced degradation of p53 may play a role in controlling the extent and duration of the p53 response.

3,298 citations

Journal ArticleDOI
TL;DR: Understanding the complex mechanisms that regulate whether or not a cell dies in response to p53 will ultimately contribute to the development of therapeutic strategies to repair the apoptotic p53 response in cancers.
Abstract: Compared with many normal tissues, cancer cells are highly sensitized to apoptotic signals, and survive only because they have acquired lesions — such as loss of p53 — that prevent or impede cell death. We are now beginning to understand the complex mechanisms that regulate whether or not a cell dies in response to p53 — insights that will ultimately contribute to the development of therapeutic strategies to repair the apoptotic p53 response in cancers.

3,242 citations

Journal ArticleDOI
TL;DR: Some of the key developments leading to the current state of knowledge in p53 research are presented and how they either shed light on or add to the complexities of p53 are discussed.
Abstract: As the tale of p53 unfolds, it becomes ever more intriguing. Although our understanding of the critical and complex roles played by p53 is progressing rapidly, new findings continue to pose new paradoxes. Here we present some of these recent advances in p53 research and discuss how they either shed light on or add to the complexities of p53. Therefore, we only briefly summarize some of the key developments leading to our current state of knowledge. For further information, the reader is referred to several excellent reviews that have focused on p53 research (see Donehower and Bradley 1993; Levine 1993; Greenblatt et al. 1994; Oren 1994; Prives 1994; Kinzler and Vogelstein 1996).

2,445 citations

References
More filters
Journal ArticleDOI
19 Nov 1993-Cell
TL;DR: A gene is identified, named WAF1, whose induction was associated with wild-type but not mutant p53 gene expression in a human brain tumor cell line and that could be an important mediator of p53-dependent tumor growth suppression.

8,339 citations

Journal ArticleDOI
19 Nov 1993-Cell
TL;DR: In this article, an improved two-hybrid system was employed to isolate human genes encoding Cdk-interacting proteins (Cips) and found that CIP1 is a potent, tight-binding inhibitor of Cdks and can inhibit the phosphorylation of Rb by cyclin A-Cdk2.

5,726 citations

Journal ArticleDOI
19 Mar 1992-Nature
TL;DR: Observations indicate that a normal p53 gene is dispensable for embryonic development, that its absence predisposes the animal to neoplastic disease, and that an oncogenic mutant form of p53 is not obligatory for the genesis of many types of tumours.
Abstract: Mutations in the p53 tumour-suppressor gene are the most frequently observed genetic lesions in human cancers. To investigate the role of the p53 gene in mammalian development and tumorigenesis, a null mutation was introduced into the gene by homologous recombination in murine embryonic stem cells. Mice homozygous for the null allele appear normal but are prone to the spontaneous development of a variety of neoplasms by 6 months of age. These observations indicate that a normal p53 gene is dispensable for embryonic development, that its absence predisposes the animal to neoplastic disease, and that an oncogenic mutant form of p53 is not obligatory for the genesis of many types of tumours.

4,710 citations

Journal ArticleDOI
27 Jan 1995-Cell
TL;DR: The bax gene promoter region contains four motifs with homology to consensus p53-binding sites and wild-type but not mutant p53 protein bound to oligonucleotides corresponding to this region of the bax promoter, suggesting that bax is a p53 primary-response gene, presumably involved in a p 53-regulated pathway for induction of apoptosis.

4,150 citations

Journal Article
TL;DR: The p53 tumor suppressor gene has become a paradigm in cancer research because it is commonly mutated in human cancer and the spectrum of p53 mutations in these cancers is providing clues to the etiology and molecular pathogenesis of neoplasia as discussed by the authors.
Abstract: The p53 tumor suppressor gene has come to the forefront of cancer research because it is commonly mutated in human cancer and the spectrum of p53 mutations in these cancers is providing clues to the etiology and molecular pathogenesis of neoplasia (1—3). Detection of p53 abnormalities may have diagnostic, prognostic, and therapeutic implications (4). The 15-year history of p53 investigations is a paradigm in cancer research, illustrating the convergence of previously parallel lines of basic, clinical, and epidemiological investigation and the rapid trans fer of research findings from the laboratory to the clinic. p53 is clearly a component in biochemical pathways central to human carcinogen esis; p53 protein alterations due to missense mutations and loss of p53 protein by nonsense or frameshift mutations provide a selective ad vantage for clonal expansion of preneoplastic and neoplastic cells (5). The potential for a missense mutation to cause loss of tumor suppres sor function and gain of oncogenic activity, i.e., to transform cells by two mechanisms, is one explanation for the commonality of p53 mutations in human cancer. Recent studies investigating the mecha nisms underlying the biological activity of p53 indicate that the protein is involved in gene transcription, DNA synthesis and repair, genomic plasticity, and programmed cell death (1—6).These complex biochemical processes are performed by multicomponent protein ma chines; therefore, it is not surprising that the p53 protein forms complexes with other cellular proteins (Fig. 1) and that some viral oncoproteins alter the functions of these machines by binding to p53 and perturbing its interaction with other cellular protein components. In this Perspective, we will focus on the origin of p.53 mutations, the mutational spectrum of p.53 in human cancers, and the hypotheses generated by the analysis of p53 mutations in premalignant and malignant cells. The interpretation ofp53 mutations in human cancers is based on observations of the patterns of DNA damage induced by chemical and physical mutagens in model systems. In this Introduc tion, we will review these data, which provide the background for many of the inferences drawn from p53 mutational analysis.

3,733 citations