scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity

TL;DR: In this article, the authors demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond.
Abstract: Integrated quantum photonic technologies are key for future applications in quantum information, ultralow-power opto-electronics and sensing. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The physical principles that allow for magnetic field detection with NV centres are presented and first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences are discussed.
Abstract: The isolated electronic spin system of the nitrogen-vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of 'NV magnetometry'. It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.

1,033 citations

Journal ArticleDOI
TL;DR: The latest quantum dot-based single-Photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.
Abstract: Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.

828 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors, with a focus on applications in quantum networks.
Abstract: A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light–matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light–matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light–matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors. Atom-like quantum emitters in solids have emerged as promising building blocks for quantum information processing. In this Review, recent advances in three leading material platforms—diamond, silicon carbide and atomically thin semiconductors—are summarized, with a focus on applications in quantum networks

572 citations

Journal ArticleDOI
TL;DR: In this article, three major approaches to generate optical nonlinearities based on cavity quantum electrodynamics, atomic ensembles with large Kerr non-linearities and strong atomic interactions are reviewed.
Abstract: This review article summarizes the emerging field of quantum nonlinear optics. Three major approaches to generate optical nonlinearities based on cavity quantum electrodynamics, atomic ensembles with large Kerr nonlinearities and strong atomic interactions are reviewed. Applications of quantum nonlinear optics and many-body physics with strongly interacting photons are also discussed.

565 citations

Journal ArticleDOI
TL;DR: The results open the possibility of diamond lasers based on NV− centres, tuneable over the phonon sideband, which broadens the applications of NV− magnetometers from single centre nanoscale sensors to a new generation of ultra-precise ensemble laser sensors, which exploit the contrast and signal amplification of a lasing system.
Abstract: Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively charged nitrogen-vacancy (NV−) centres being discussed as a potential laser medium since the 1980s, there have been no definitive observations of stimulated emission from ensembles of NV− to date. Here we show both theoretical and experimental evidence for stimulated emission from NV− using light in the phonon sidebands around 700 nm. Furthermore, we show the transition from stimulated emission to photoionization as the stimulating laser wavelength is reduced from 700 to 620 nm. While lasing at the zero-phonon line is suppressed by ionization, our results open the possibility of diamond lasers based on NV− centres, tuneable over the phonon sideband. This broadens the applications of NV− magnetometers from single centre nanoscale sensors to a new generation of ultra-precise ensemble laser sensors, which exploit the contrast and signal amplification of a lasing system. Here Jeskeet al. show both theoretical and experimental evidence for stimulated emission from negatively charged nitrogen vacancy centres using light in the phonon sidebands around 700 nm, demonstrating its suitability as a laser medium.

508 citations

References
More filters
Book
01 Jan 2000
TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Abstract: Part I Fundamental Concepts: 1 Introduction and overview 2 Introduction to quantum mechanics 3 Introduction to computer science Part II Quantum Computation: 4 Quantum circuits 5 The quantum Fourier transform and its application 6 Quantum search algorithms 7 Quantum computers: physical realization Part III Quantum Information: 8 Quantum noise and quantum operations 9 Distance measures for quantum information 10 Quantum error-correction 11 Entropy and information 12 Quantum information theory Appendices References Index

25,929 citations

Journal ArticleDOI
TL;DR: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing, with a focus on entanglement.
Abstract: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing. The first two papers deal with entanglement. The paper by R. Mosseri and P. Ribeiro presents a detailed description of the two-and three-qubit geometry in Hilbert space, dealing with the geometry of fibrations and discrete geometry. The paper by J.-G.Luque et al. is more algebraic and considers invariants of pure k-qubit states and their application to entanglement measurement.

14,205 citations


"Resonant enhancement of the zero-ph..." refers background in this paper

  • ...These devices operating at the fundamental limit of light-matter interaction could also enable future optical signal processing devices and sensors operating at ultra-low power levels, as well as provide a platform for fundamental studies of many-particle entanglement that is a prerequisite of nontrivial quantum factoring and searching [1]....

    [...]

  • ...Integrated quantum photonic technologies are key for future applications in quantum information [1, 2], ultralow-power opto-electronics [3], and sensing [4]....

    [...]

Book ChapterDOI
E. M. Purcell1

2,214 citations


"Resonant enhancement of the zero-ph..." refers background in this paper

  • ...The spontaneous emission rate enhancement of a particular dipole transition i of an emitter coupled to a microresonator, relative to the uniform dielectric medium of the resonator, is enhance...

    [...]

Journal ArticleDOI
TL;DR: The first quantum technology that harnesses quantum mechanical effects for its core operation has arrived in the form of commercially available quantum key distribution systems as mentioned in this paper, which achieves enhanced security by encoding information in photons such that an eavesdropper in the system can be detected.
Abstract: The first quantum technology that harnesses quantum mechanical effects for its core operation has arrived in the form of commercially available quantum key distribution systems. This technology achieves enhanced security by encoding information in photons such that an eavesdropper in the system can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, which promise exponentially greater computational power for particular tasks. Photonics is destined to have a central role in such technologies owing to the high-speed transmission and outstanding low-noise properties of photons. These technologies may use single photons, quantum states of bright laser beams or both, and will undoubtedly apply and drive state-of-the-art developments in photonics.

1,889 citations