scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Resource allocation for device-to-device communications underlaying LTE-advanced networks

TL;DR: A novel resource allocation scheme based on a column generation method for D2D communications in LTE-Advanced networks is introduced to maximize the spectrum utilization by finding the minimum transmission length in terms of time slots while protecting the cellular users from harmful interference and guaranteeing the QoS of D1D links.
Abstract: The Long Term Evolution-Advanced (LTEAdvanced) networks are being developed to provide mobile broadband services for the fourth generation (4G) cellular wireless systems. Deviceto- device (D2D) communications is a promising technique to provide wireless peer-to-peer services and enhance spectrum utilization in the LTE-Advanced networks. In D2D communications, the user equipments (UEs) are allowed to directly communicate between each other by reusing the cellular resources rather than using uplink and downlink resources in the cellular mode when communicating via the base station. However, enabling D2D communications in a cellular network poses two major challenges. First, the interference caused to the cellular users by D2D devices could critically affect the performances of the cellular devices. Second, the minimum quality-of-service (QoS) requirements of D2D communications need to be guaranteed. In this article, we introduce a novel resource allocation scheme (i.e. joint resource block scheduling and power control) for D2D communications in LTE-Advanced networks to maximize the spectrum utilization while addressing the above challenges. First, an overview of LTE-Advanced networks, and architecture and signaling support for provisioning of D2D communications in these networks are described. Furthermore, research issues and the current state-of-the-art of D2D communications are discussed. Then, a resource allocation scheme based on a column generation method is proposed for D2D communications. The objective is to maximize the spectrum utilization by finding the minimum transmission length in terms of time slots for D2D links while protecting the cellular users from harmful interference and guaranteeing the QoS of D2D links. The performance of this scheme is evaluated through simulations.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper identifies and provides a detailed description of various potential emerging technologies for the fifth generation communications with SWIPT/WPT and provides some interesting research challenges and recommendations with the objective of stimulating future research in this emerging domain.
Abstract: Initial efforts on wireless power transfer (WPT) have concentrated toward long-distance transmission and high power applications. Nonetheless, the lower achievable transmission efficiency and potential health concerns arising due to high power applications, have caused limitations in their further developments. Due to tremendous energy consumption growth with ever-increasing connected devices, alternative wireless information and power transfer techniques have been important not only for theoretical research but also for the operational costs saving and for the sustainable growth of wireless communications. In this regard, radio frequency energy harvesting (RF-EH) for a wireless communications system presents a new paradigm that allows wireless nodes to recharge their batteries from the RF signals instead of fixed power grids and the traditional energy sources. In this approach, the RF energy is harvested from ambient electromagnetic sources or from the sources that directionally transmit RF energy for EH purposes. Notable research activities and major advances have occurred over the last decade in this direction. Thus, this paper provides a comprehensive survey of the state-of-art techniques, based on advances and open issues presented by simultaneous wireless information and power transfer (SWIPT) and WPT assisted technologies. More specifically, in contrast to the existing works, this paper identifies and provides a detailed description of various potential emerging technologies for the fifth generation communications with SWIPT/WPT. Moreover, we provide some interesting research challenges and recommendations with the objective of stimulating future research in this emerging domain.

621 citations


Cites background from "Resource allocation for device-to-d..."

  • ...Relay user equipment relay (UER) node works as an intermediate node [155], [156]....

    [...]

  • ...It plays an important role in improving the network capacity and resource utilization [155]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey of available D2D related research works ranging from technical papers to experimental prototypes to standard activities is provided, and some open research problems which deserve further studies are outlined.
Abstract: Among the LTE-A communication techniques, Device-to-Device (D2D) communication which is defined to directly route data traffic between spatially closely located mobile user equipments (UEs), holds great promise in improving energy efficiency, throughput, delay, as well as spectrum efficiency As a combination of ad-hoc and centralized communication mechanisms, D2D communication enables researchers to merge together the long-term development achievements in previously disjoint domains of ad-hoc networking and centralized networking To help researchers to have a systematic understanding of the emerging D2D communication, we provide in this paper a comprehensive survey of available D2D related research works ranging from technical papers to experimental prototypes to standard activities, and outline some open research problems which deserve further studies

613 citations


Cites background from "Resource allocation for device-to-d..."

  • ...[40] also explored the problem of resource allocation for D2D communication underlaying LTE-A networks, by allowing multiple D2D transmissions in the same...

    [...]

Book
05 Jun 2015
TL;DR: This monograph presents a unified framework for energy efficiency maximization in wireless networks via fractional programming theory, showing how the described framework is general enough to be extended in these directions, proving useful in tackling future challenges that may arise in the design of energy-efficient future wireless networks.
Abstract: This monograph presents a unified framework for energy efficiency maximization in wireless networks via fractional programming theory. The definition of energy efficiency is introduced, with reference to single-user and multi-user wireless networks, and it is observed how the problem of resource allocation for energy efficiency optimization is naturally cast as a fractional program. An extensive review of the state-of-the-art in energy efficiency optimization by fractional programming is provided, with reference to centralized and distributed resource allocation schemes. A solid background on fractional programming theory is provided. The key-notion of generalized concavity is presented and its strong connection with fractional functions described. A taxonomy of fractional problems is introduced, and for each class of fractional problem, general solution algorithms are described, discussing their complexity and convergence properties. The described theoretical and algorithmic framework is applied to solve energy efficiency maximization problems in practical wireless networks. A general system and signal model is developed which encompasses many relevant special cases, such as one-hop and two-hop heterogeneous networks, multi-cell networks, small-cell networks, device-to-device systems, cognitive radio systems, and hardware-impaired networks, wherein multiple-antennas and multiple subcarriers are possibly employed. Energy-efficient resource allocation algorithms are developed, considering both centralized, cooperative schemes, as well as distributed approaches for self-organizing networks. Finally, some remarks on future lines of research are given, stating some open problems that remain to be studied. It is shown how the described framework is general enough to be extended in these directions, proving useful in tackling future challenges that may arise in the design of energy-efficient future wireless networks.

570 citations


Cites background from "Resource allocation for device-to-d..."

  • ...device-to-device (D2D) communications in cellular networks can be either operator-controlled [103], or opportunistically activated by the devices, thus underlaying the regular cellular system [139]....

    [...]

Journal ArticleDOI
TL;DR: This work focuses on how state-of-the-art routing algorithms can achieve intelligent D2D communication in the IoT, and presents an overview of how such communication can be achieved.
Abstract: Analogous to the way humans use the Internet, devices will be the main users in the Internet of Things (IoT) ecosystem. Therefore, device-to-device (D2D) communication is expected to be an intrinsic part of the IoT. Devices will communicate with each other autonomously without any centralized control and collaborate to gather, share, and forward information in a multihop manner. The ability to gather relevant information in real time is key to leveraging the value of the IoT as such information will be transformed into intelligence, which will facilitate the creation of an intelligent environment. Ultimately, the quality of the information gathered depends on how smart the devices are. In addition, these communicating devices will operate with different networking standards, may experience intermittent connectivity with each other, and many of them will be resource constrained. These characteristics open up several networking challenges that traditional routing protocols cannot solve. Consequently, devices will require intelligent routing protocols in order to achieve intelligent D2D communication. We present an overview of how intelligent D2D communication can be achieved in the IoT ecosystem. In particular, we focus on how state-of-the-art routing algorithms can achieve intelligent D2D communication in the IoT.

431 citations


Cites background from "Resource allocation for device-to-d..."

  • ...resources and if spectrum reuse will result in high interference [19]....

    [...]

  • ...and coordinated resource optimization, it may not be suitable for some D2D communication in the IoT [19]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication, and outline several key open research directions.
Abstract: Device-to-device communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e. D2D direct communication) or multi-hop clusterbased transmission (i.e. in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.

356 citations

References
More filters
Book
01 Jan 1997
TL;DR: p. 27, l.
Abstract: p. 27, l. −11, replace “Schwartz” by “Schwarz” p. 69, l. −13: “ai∗x = bi” should be “ai∗x = bi∗” p. 126, l. 16, replace “inequality constraints” by “linear inequality constraints” p. 153, l. −8, replace aix 6= bi by aix 6= bi p. 163, Example 4.9, first line: replace “from” with “form” p. 165, l. 11, replace p′Ax ≥ 0 by p′Ax ≥ 0 p. 175, l. 1, replace “To this see” by “To see this” p. 203, l. 12: replace x ≥ 0 by x ≥ 0, xn+1 ≥ 0 p. 216, l. −6: replace “≤ c}” by “≤ c′}” p. 216, l. −3: replace c′ by (c1)′ p. 216, l. −2: replace c′ by (c2)′ p. 216, l. −1: right-hand side should be λ(c1)′ + (1− λ)(c2)′ p. 220, l. −12: replace “added to the pivot row” by “added to the zeroth row”

2,780 citations


"Resource allocation for device-to-d..." refers methods in this paper

  • ...The column generation method is an efficient technique to solve large integer programming problems in which it is difficult to retrieve all feasible variables [20]....

    [...]

Journal ArticleDOI
Klaus Doppler1, Mika Rinne1, Carl Wijting1, Cassio Ribeiro1, Klaus Hugl1 
TL;DR: Device-to-device (D2D) communication underlaying a 3GPP LTE-Advanced cellular network is studied as an enabler of local services with limited interference impact on the primary cellular network.
Abstract: In this article device-to-device (D2D) communication underlaying a 3GPP LTE-Advanced cellular network is studied as an enabler of local services with limited interference impact on the primary cellular network. The approach of the study is a tight integration of D2D communication into an LTE-Advanced network. In particular, we propose mechanisms for D2D communication session setup and management involving procedures in the LTE System Architecture Evolution. Moreover, we present numerical results based on system simulations in an interference limited local area scenario. Our results show that D2D communication can increase the total throughput observed in the cell area.

1,941 citations


"Resource allocation for device-to-d..." refers background or methods in this paper

  • ...Furthermore, [5] suggested that the overall throughput in the network with D2D communications may increase up to 65 percent compared to the case that all the D2D traffic are transmitted through the cellular mode....

    [...]

  • ...To enable D2D communications in the LTEAdvanced networks, [5, 6] proposed two mechanisms of D2D connectivity based on Session Initiation Protocol (SIP) and Internet Protocol (IP)....

    [...]

Journal ArticleDOI
TL;DR: The essential features of the branch-and-bound approach to constrained optimization are described, and several specific applications are reviewed, including integer linear programming Land-Doig and Balas methods, nonlinear programming minimization of nonconvex objective functions, and the quadratic assignment problem Gilmore and Lawler methods.
Abstract: The essential features of the branch-and-bound approach to constrained optimization are described, and several specific applications are reviewed. These include integer linear programming Land-Doig and Balas methods, nonlinear programming minimization of nonconvex objective functions, the traveling-salesman problem Eastman and Little, et al. methods, and the quadratic assignment problem Gilmore and Lawler methods. Computational considerations, including trade-offs between length of computation and storage requirements, are discussed and a comparison with dynamic programming is made. Various applications outside the domain of mathematical programming are also mentioned.

1,915 citations

Journal ArticleDOI
TL;DR: The results show that by proper resource management, D2D communication can effectively improve the total throughput without generating harmful interference to cellular networks.
Abstract: We consider Device-to-Device (D2D) communication underlaying cellular networks to improve local services. The system aims to optimize the throughput over the shared resources while fulfilling prioritized cellular service constraints. Optimum resource allocation and power control between the cellular and D2D connections that share the same resources are analyzed for different resource sharing modes. Optimality is discussed under practical constraints such as minimum and maximum spectral efficiency restrictions, and maximum transmit power or energy limitation. It is found that in most of the considered cases, optimum power control and resource allocation for the considered resource sharing modes can either be solved in closed form or searched from a finite set. The performance of the D2D underlay system is evaluated in both a single-cell scenario, and a Manhattan grid environment with multiple WINNER II A1 office buildings. The results show that by proper resource management, D2D communication can effectively improve the total throughput without generating harmful interference to cellular networks.

1,093 citations


"Resource allocation for device-to-d..." refers background in this paper

  • ...The work in [11] considered mode selection with power control in a single cell that includes one D2D link and one cellular user subject to spectral efficiency restrictions and maximum transmission power or energy constraints....

    [...]

  • ...Recently, [7, 10, 11] studied the mode selection problem for spectrum sharing between D2D links and cellular users in the network....

    [...]