scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Response of data-driven artificial neural network-based TEC models to neutral wind for different locations, seasons, and solar activity levels from the Indian longitude sector

01 Jul 2017-Journal of Geophysical Research (John Wiley & Sons, Ltd)-Vol. 122, Iss: 7, pp 7713-7733
TL;DR: In this article, a set of observations carried out in the Indian longitude sector have been reported in order to find the amount of improvement in performance accuracy of an ANN-based Vertical Total Electron Content (VTEC) model after incorporation of neutral wind as model input.
Abstract: The perturbations imposed on transionospheric signals by the ionosphere are a major concern for navigation. The dynamic nature of the ionosphere in the low latitude equatorial region and the Indian longitude sector has some specific characteristics such as sharp temporal and latitudinal variation of Total Electron Content (TEC). TEC in the Indian longitude sector also undergoes seasonal variations. The large magnitude and sharp variation of TEC causes large and variable range errors for satellite based navigation system such as Global Positioning System (GPS) throughout the day. For accurate navigation using Satellite Based Augmentation Systems (SBAS), proper prediction of TEC under certain geophysical conditions is necessary in the equatorial region. It has been reported in the literature that prediction accuracy of TEC has been improved using measured data driven Artificial Neural Network (ANN) based VTEC models, compared to standard ionospheric models. A set of observations carried out in the Indian longitude sector have been reported in this paper in order to find the amount of improvement in performance accuracy of an ANN-based Vertical TEC (VTEC) model after incorporation of neutral wind as model input. The variations of this improvement in prediction accuracy with respect to latitude, longitude, season and solar activity have also been reported in this paper.
Citations
More filters
Peer Review
TL;DR: In this article , a commentary about the state of Integrated, Coordinated, Open, and Networked (ICON) principles in Space Physics and Aeronomy and a discussion on several scopes and limitations to implementing them are discussed.
Abstract: This article is a commentary about the state of Integrated, Coordinated, Open, and Networked (ICON) principles (Goldman et al., 2021) in Space Physics and Aeronomy and a discussion on several scopes and limitations to implementing them. The commentary focuses on the basic introduction and brief literature survey (Section 1); possibilities of implementation of ICON in Space Physics and Aeronomy (Section 2) and limitations or challenges in this field with possible solutions using ICON principles (Section 3). The Space Physics and Aeronomy section of the American Geophysical Union (AGU) comprises the interactions between solar wind, Interplanetary Magnetic Field (IMF) and different planetary magnetospheres and ionospheres. The section also deals with solar physics, mechanisms behind existence of solar magnetic fields, and evaluations of high and low speed solar winds. This field is a collection of different interdisciplinary subtopics, making this an excellent example of integrated research. Similar and transparent methodologies are adopted to solve problems all over the world which shows a coordinated approach of research. Freely available data from different space agencies and universities are also great assets for this domain which supports open research. The scopes of possible networked research with mutual benefits are also highlighted. Examples of ICON-based international collaborations and support mechanisms towards young scientists are elaborated which are helpful to mitigate limitations in this domain. Space Physics and Aeronomy Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science
References
More filters
Journal ArticleDOI
TL;DR: In this article, the presence or absence of the latitudinal anomaly in TEC on a particular day depended only on the strength of the electrojet current, as determined by the difference of the horizontal magnetic field at stations on the magnetic equator and stations outside the equatorial electrojet.
Abstract: Results are presented on continuous TEC measurements, taken along a chain of stations spaced between 0 deg N and 25 deg N and aligned roughly along the same longitude sector in India, that describe the day-to-day behavior of the location of equatorial anomaly in the TEC during the period of the 1975-1976 sunspot minimum, when the ATS spacecraft was visible from India. It was found that the presence or absence of the latitudinal anomaly in TEC on a particular day depended only on the strength of the electrojet current, as determined by the difference of the horizontal magnetic field at stations on the magnetic equator and stations outside the equatorial electrojet, rather than on the horizontal magnetic field measured only at equatorial stations.

222 citations

Journal ArticleDOI
TL;DR: In this paper, the global distribution of variations in the behavior of the electron density of the F2-layer at midday is examined for different levels of solar activity, and it is found that the variations in Nmax can be divided into three major components: winter maximum (seasonal), equinoctial maxima (semi-annual) and a component which peaks in December-January (annual).

214 citations

Journal ArticleDOI
TL;DR: In this paper, a mechanism is proposed to explain the cause of the global, semiannual thermospheric density variation, and it is suggested that the global-scale, interhemispheric circulation at solstice acts like a huge turbulent eddy in mixing the major thermosphere species.
Abstract: A mechanism is proposed to explain the cause of the global, semiannual thermospheric density variation. It is suggested that the global-scale, interhemispheric circulation at solstice acts like a huge turbulent eddy in mixing the major thermospheric species. The effect causes less diffusive separation of the species at solstice, which tends to raise molecular nitrogen and oxygen densities and reduce atomic oxygen density, compared with equinox. The increased mean mass, at solstice, reduces the density scale height at a given altitude. This “compression” of the atmosphere at solstice can explain the mean amplitude of the semiannual density anomaly. Since ionospheric loss rates are affected by neutral composition, the proposed mechanism also leads to a similar ionospheric density variation.

187 citations

Journal ArticleDOI
TL;DR: The pre-reversal enhancement (PRE) in the vertical ion drifts is a particularly well-known low latitude electrodynamic feature, exhibited as a sharp upward spike in the velocity shortly after local sunset, which remains poorly understood theoretically as discussed by the authors.
Abstract: Low latitude F region ion motions exhibit strong seasonal and solar cycle dependences. The pre-reversal enhancement (PRE) in the vertical ion drifts is a particularly well-known low latitude electrodynamic feature, exhibited as a sharp upward spike in the velocity shortly after local sunset, which remains poorly understood theoretically. The PRE has been successfully simulated for the first time by a general circulation model, the National Center for Atmospheric Research thermosphere/ionosphere/electrodynamic general circulation model (TIEGCM). The TIEGCM reproduces the zonal and vertical plasma drifts for equinox, June, and December for low, medium, and high solar activity. The crucial parameter in the model to produce the PRE is the nighttime E region electron densities: densities ≥ 104 cm−3 preclude the PRE development by short-circuiting the F region dynamo. The E region semidiurnal 2,2 tidal wave largely determines the magnitude and phase of the daytime F region drifts.

170 citations

Journal ArticleDOI
TL;DR: In this article, an extensive series of computations, using the Coupled Thermosphere-Ionosphere-Plasmasphere model (CTIP), has been undertaken to investigate the semiannual variation in peak noontime electron density, a common feature of the Fa-layer, particularly at low latitudes and in the southern hemisphere at mid-latitudes.
Abstract: An extensive series of computations, using the Coupled Thermosphere-Ionosphere-Plasmasphere model (CTIP), has been undertaken to investigate the semiannual variation in peak noontime electron density, a common feature of the Fa-layer, particularly at low latitudes and in the southern hemisphere at mid-latitudes. Results from the model reveal such a variation, most prominently, at mid-latitudes, in the South American sector. An analysis of this phenomenon shows that it is intimately related to the large offset of the geomagnetic axis from Earths spin axis in the southern hemisphere. Because of this offset, a given geographic latitude in the South American sector corresponds to a lower magnetic latitude than in other sectors and is thus farther from the energy inputs associated with the auroral regions. As a result, the composition changes are much smaller during the winter months than at other longitudes, the mean molecular mass being essentially constant for a 4-month period centered on the winter solstice. This result is understood in terms of the global thermospheric circulation. In the absence of any composition changes, noon ionospheric density is influenced primarily by the solar zenith angle. This angle reaches a maximum at the winter Solstice, leading to diminished ion production, a minimum in N(m)F2, and therefore a semiannual variation overall. On the basis of the model results, the semiannual variation is seen as a feature of the midlatitude ionosphere at geographic longitudes opposite to the location of the geomagnetic pole. This phenomenon is seen in both northern and southern hemispheres, though the effect is much larger in the southern hemisphere as a result of the greater magnetic offset.

160 citations