scispace - formally typeset

Proceedings Article

RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism

01 Jan 2016-Vol. 29, pp 3504-3512

Abstract: Accuracy and interpretability are two dominant features of successful predictive models. Typically, a choice must be made in favor of complex black box models such as recurrent neural networks (RNN) for accuracy versus less accurate but more interpretable traditional models such as logistic regression. This tradeoff poses challenges in medicine where both accuracy and interpretability are important. We addressed this challenge by developing the REverse Time AttentIoN model (RETAIN) for application to Electronic Health Records (EHR) data. RETAIN achieves high accuracy while remaining clinically interpretable and is based on a two-level neural attention model that detects influential past visits and significant clinical variables within those visits (e.g. key diagnoses). RETAIN mimics physician practice by attending the EHR data in a reverse time order so that recent clinical visits are likely to receive higher attention. RETAIN was tested on a large health system EHR dataset with 14 million visits completed by 263K patients over an 8 year period and demonstrated predictive accuracy and computational scalability comparable to state-of-the-art methods such as RNN, and ease of interpretability comparable to traditional models.
Topics: Interpretability (55%)
Citations
More filters

Journal ArticleDOI
01 Jun 2020-Information Fusion
Abstract: In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

1,161 citations


Proceedings ArticleDOI
Sarthak Jain1, Byron C. Wallace1Institutions (1)
01 Jun 2019-
Abstract: Attention mechanisms have seen wide adoption in neural NLP models. In addition to improving predictive performance, these are often touted as affording transparency: models equipped with attention provide a distribution over attended-to input units, and this is often presented (at least implicitly) as communicating the relative importance of inputs. However, it is unclear what relationship exists between attention weights and model outputs. In this work we perform extensive experiments across a variety of NLP tasks that aim to assess the degree to which attention weights provide meaningful “explanations” for predictions. We find that they largely do not. For example, learned attention weights are frequently uncorrelated with gradient-based measures of feature importance, and one can identify very different attention distributions that nonetheless yield equivalent predictions. Our findings show that standard attention modules do not provide meaningful explanations and should not be treated as though they do.

453 citations


Posted Content
Sarthak Jain1, Byron C. Wallace1Institutions (1)
TL;DR: This work performs extensive experiments across a variety of NLP tasks to assess the degree to which attention weights provide meaningful “explanations” for predictions, and finds that they largely do not.
Abstract: Attention mechanisms have seen wide adoption in neural NLP models. In addition to improving predictive performance, these are often touted as affording transparency: models equipped with attention provide a distribution over attended-to input units, and this is often presented (at least implicitly) as communicating the relative importance of inputs. However, it is unclear what relationship exists between attention weights and model outputs. In this work, we perform extensive experiments across a variety of NLP tasks that aim to assess the degree to which attention weights provide meaningful `explanations' for predictions. We find that they largely do not. For example, learned attention weights are frequently uncorrelated with gradient-based measures of feature importance, and one can identify very different attention distributions that nonetheless yield equivalent predictions. Our findings show that standard attention modules do not provide meaningful explanations and should not be treated as though they do. Code for all experiments is available at this https URL.

348 citations


Proceedings ArticleDOI
Edward Choi1, Mohammad Taha Bahadori1, Le Song1, Walter F. Stewart2  +1 moreInstitutions (2)
04 Aug 2017-
Abstract: Deep learning methods exhibit promising performance for predictive modeling in healthcare, but two important challenges remain: - Data insufficiency: Often in healthcare predictive modeling, the sample size is insufficient for deep learning methods to achieve satisfactory results. Interpretation: The representations learned by deep learning methods should align with medical knowledge. To address these challenges, we propose GRaph-based Attention Model (GRAM) that supplements electronic health records (EHR) with hierarchical information inherent to medical ontologies. Based on the data volume and the ontology structure, GRAM represents a medical concept as a combination of its ancestors in the ontology via an attention mechanism. We compared predictive performance (i.e. accuracy, data needs, interpretability) of GRAM to various methods including the recurrent neural network (RNN) in two sequential diagnoses prediction tasks and one heart failure prediction task. Compared to the basic RNN, GRAM achieved 10% higher accuracy for predicting diseases rarely observed in the training data and 3% improved area under the ROC curve for predicting heart failure using an order of magnitude less training data. Additionally, unlike other methods, the medical concept representations learned by GRAM are well aligned with the medical ontology. Finally, GRAM exhibits intuitive attention behaviors by adaptively generalizing to higher level concepts when facing data insufficiency at the lower level concepts.

317 citations


Proceedings ArticleDOI
Fenglong Ma1, Radha Chitta2, Jing Zhou2, Quanzeng You2  +2 moreInstitutions (3)
13 Aug 2017-
Abstract: Predicting the future health information of patients from the historical Electronic Health Records (EHR) is a core research task in the development of personalized healthcare. Patient EHR data consist of sequences of visits over time, where each visit contains multiple medical codes, including diagnosis, medication, and procedure codes. The most important challenges for this task are to model the temporality and high dimensionality of sequential EHR data and to interpret the prediction results. Existing work solves this problem by employing recurrent neural networks (RNNs) to model EHR data and utilizing simple attention mechanism to interpret the results. However, RNN-based approaches suffer from the problem that the performance of RNNs drops when the length of sequences is large, and the relationships between subsequent visits are ignored by current RNN-based approaches. To address these issues, we propose Dipole, an end-to-end, simple and robust model for predicting patients' future health information. Dipole employs bidirectional recurrent neural networks to remember all the information of both the past visits and the future visits, and it introduces three attention mechanisms to measure the relationships of different visits for the prediction. With the attention mechanisms, Dipole can interpret the prediction results effectively. Dipole also allows us to interpret the learned medical code representations which are confirmed positively by medical experts. Experimental results on two real world EHR datasets show that the proposed Dipole can significantly improve the prediction accuracy compared with the state-of-the-art diagnosis prediction approaches and provide clinically meaningful interpretation.

295 citations


Network Information
Related Papers (5)
24 May 2016, Scientific Data

Alistair E. W. Johnson, Tom J. Pollard +11 more

01 Nov 1997, Neural Computation

Sepp Hochreiter, Jürgen Schmidhuber

01 Jan 2015

Dzmitry Bahdanau, Kyunghyun Cho +1 more

12 Jun 2017

Ashish Vaswani, Noam Shazeer +6 more

13 Aug 2016

Marco Tulio Ribeiro, Sameer Singh +1 more

Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20221
2021159
2020170
2019137
201865
201732