scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Reversible jump Markov chain Monte Carlo computation and Bayesian model determination

01 Dec 1995-Biometrika (Oxford University Press)-Vol. 82, Iss: 4, pp 711-732
TL;DR: In this article, the authors propose a new framework for the construction of reversible Markov chain samplers that jump between parameter subspaces of differing dimensionality, which is flexible and entirely constructive.
Abstract: Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some fixed standard underlying measure. They have therefore not been available for application to Bayesian model determination, where the dimensionality of the parameter vector is typically not fixed. This paper proposes a new framework for the construction of reversible Markov chain samplers that jump between parameter subspaces of differing dimensionality, which is flexible and entirely constructive. It should therefore have wide applicability in model determination problems. The methodology is illustrated with applications to multiple change-point analysis in one and two dimensions, and to a Bayesian comparison of binomial experiments.
Citations
More filters
Journal ArticleDOI
TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

40,785 citations

Journal ArticleDOI
01 Jun 2000-Genetics
TL;DR: Pritch et al. as discussed by the authors proposed a model-based clustering method for using multilocus genotype data to infer population structure and assign individuals to populations, which can be applied to most of the commonly used genetic markers, provided that they are not closely linked.
Abstract: We describe a model-based clustering method for using multilocus genotype data to infer population structure and assign individuals to populations. We assume a model in which there are K populations (where K may be unknown), each of which is characterized by a set of allele frequencies at each locus. Individuals in the sample are assigned (probabilistically) to populations, or jointly to two or more populations if their genotypes indicate that they are admixed. Our model does not assume a particular mutation process, and it can be applied to most of the commonly used genetic markers, provided that they are not closely linked. Applications of our method include demonstrating the presence of population structure, assigning individuals to populations, studying hybrid zones, and identifying migrants and admixed individuals. We show that the method can produce highly accurate assignments using modest numbers of loci— e.g. , seven microsatellite loci in an example using genotype data from an endangered bird species. The software used for this article is available from http://www.stats.ox.ac.uk/~pritch/home.html.

27,454 citations

Journal ArticleDOI
TL;DR: The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo, and an executable is available at http://brahms.rochester.edu/software.html.
Abstract: Summary: The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. Availability: MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.

20,627 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations


Cites methods from "Reversible jump Markov chain Monte ..."

  • ...The solution, proposed by (Green 1998) and known as reversible jump MCMC or RJMCMC, is to augment the low dimensional space with extra random variables so that the two spaces have a common measure....

    [...]

BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,574 citations


Cites background or methods from "Reversible jump Markov chain Monte ..."

  • ...Sequential algorithms, incorporating MCMC techniques, have been used to carry out fixed-parameter estimation in (Gilks and Berzuini 1999), and model selection in (Andrieu, de Freitas and Doucet 1999b) (using reversible jump MCMC (Green 1995))....

    [...]

  • ...Green (Green 1995) has studied the conditions under which this limit exists....

    [...]

  • ...However, Green has introduced a flexible class of MCMC samplers, the so-called reversible jump MCMC, capable of jumping between subspaces of different dimensions (Green 1995)....

    [...]

  • ...For a discussion of this topic, see Green (Green 1995)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Abstract: A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two‐dimensional rigid‐sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four‐term virial coefficient expansion.

35,161 citations

Journal ArticleDOI
TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Abstract: We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.

18,761 citations

Journal ArticleDOI
TL;DR: A generalization of the sampling method introduced by Metropolis et al. as mentioned in this paper is presented along with an exposition of the relevant theory, techniques of application and methods and difficulties of assessing the error in Monte Carlo estimates.
Abstract: SUMMARY A generalization of the sampling method introduced by Metropolis et al. (1953) is presented along with an exposition of the relevant theory, techniques of application and methods and difficulties of assessing the error in Monte Carlo estimates. Examples of the methods, including the generation of random orthogonal matrices and potential applications of the methods to numerical problems arising in statistics, are discussed. For numerical problems in a large number of dimensions, Monte Carlo methods are often more efficient than conventional numerical methods. However, implementation of the Monte Carlo methods requires sampling from high dimensional probability distributions and this may be very difficult and expensive in analysis and computer time. General methods for sampling from, or estimating expectations with respect to, such distributions are as follows. (i) If possible, factorize the distribution into the product of one-dimensional conditional distributions from which samples may be obtained. (ii) Use importance sampling, which may also be used for variance reduction. That is, in order to evaluate the integral J = X) p(x)dx = Ev(f), where p(x) is a probability density function, instead of obtaining independent samples XI, ..., Xv from p(x) and using the estimate J, = Zf(xi)/N, we instead obtain the sample from a distribution with density q(x) and use the estimate J2 = Y{f(xj)p(x1)}/{q(xj)N}. This may be advantageous if it is easier to sample from q(x) thanp(x), but it is a difficult method to use in a large number of dimensions, since the values of the weights w(xi) = p(x1)/q(xj) for reasonable values of N may all be extremely small, or a few may be extremely large. In estimating the probability of an event A, however, these difficulties may not be as serious since the only values of w(x) which are important are those for which x -A. Since the methods proposed by Trotter & Tukey (1956) for the estimation of conditional expectations require the use of importance sampling, the same difficulties may be encountered in their use. (iii) Use a simulation technique; that is, if it is difficult to sample directly from p(x) or if p(x) is unknown, sample from some distribution q(y) and obtain the sample x values as some function of the corresponding y values. If we want samples from the conditional dis

14,965 citations

Book
01 Jan 1993
TL;DR: The digitized image and its properties are studied, including shape representation and description, and linear discrete image transforms, and texture analysis.
Abstract: List of Algorithms. Preface. Possible Course Outlines. 1. Introduction. 2. The Image, Its Representations and Properties. 3. The Image, Its Mathematical and Physical Background. 4. Data Structures for Image Analysis. 5. Image Pre-Processing. 6. Segmentation I. 7. Segmentation II. 8. Shape Representation and Description. 9. Object Recognition. 10. Image Understanding. 11. 3d Geometry, Correspondence, 3d from Intensities. 12. Reconstruction from 3d. 13. Mathematical Morphology. 14. Image Data Compression. 15. Texture. 16. Motion Analysis. Index.

5,451 citations

Journal ArticleDOI
TL;DR: Several Markov chain methods are available for sampling from a posterior distribution as discussed by the authors, including Gibbs sampler and Metropolis algorithm, and several strategies for constructing hybrid algorithms, which can be used to guide the construction of more efficient algorithms.
Abstract: Several Markov chain methods are available for sampling from a posterior distribution. Two important examples are the Gibbs sampler and the Metropolis algorithm. In addition, several strategies are available for constructing hybrid algorithms. This paper outlines some of the basic methods and strategies and discusses some related theoretical and practical issues. On the theoretical side, results from the theory of general state space Markov chains can be used to obtain convergence rates, laws of large numbers and central limit theorems for estimates obtained from Markov chain methods. These theoretical results can be used to guide the construction of more efficient algorithms. For the practical use of Markov chain methods, standard simulation methodology provides several variance reduction techniques and also give guidance on the choice of sample size and allocation.

3,780 citations