scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Reversible watermark using the difference expansion of a generalized integer transform

01 Aug 2004-IEEE Transactions on Image Processing (IEEE Trans Image Process)-Vol. 13, Iss: 8, pp 1147-1156
TL;DR: Results indicate that the spatial, quad-based algorithm developed for color images allows for hiding the largest payload at the highest signal-to-noise ratio.
Abstract: A reversible watermarking algorithm with very high data-hiding capacity has been developed for color images. The algorithm allows the watermarking process to be reversed, which restores the exact original image. The algorithm hides several bits in the difference expansion of vectors of adjacent pixels. The required general reversible integer transform and the necessary conditions to avoid underflow and overflow are derived for any vector of arbitrary length. Also, the potential payload size that can be embedded into a host image is discussed, and a feedback system for controlling this size is developed. In addition, to maximize the amount of data that can be hidden into an image, the embedding algorithm can be applied recursively across the color components. Simulation results using spatial triplets, spatial quads, cross-color triplets, and cross-color quads are presented and compared with the existing reversible watermarking algorithms. These results indicate that the spatial, quad-based algorithm allows for hiding the largest payload at the highest signal-to-noise ratio.
Citations
More filters
Book
23 Nov 2007
TL;DR: This new edition now contains essential information on steganalysis and steganography, and digital watermark embedding is given a complete update with new processes and applications.
Abstract: Digital audio, video, images, and documents are flying through cyberspace to their respective owners. Unfortunately, along the way, individuals may choose to intervene and take this content for themselves. Digital watermarking and steganography technology greatly reduces the instances of this by limiting or eliminating the ability of third parties to decipher the content that he has taken. The many techiniques of digital watermarking (embedding a code) and steganography (hiding information) continue to evolve as applications that necessitate them do the same. The authors of this second edition provide an update on the framework for applying these techniques that they provided researchers and professionals in the first well-received edition. Steganography and steganalysis (the art of detecting hidden information) have been added to a robust treatment of digital watermarking, as many in each field research and deal with the other. New material includes watermarking with side information, QIM, and dirty-paper codes. The revision and inclusion of new material by these influential authors has created a must-own book for anyone in this profession. *This new edition now contains essential information on steganalysis and steganography *New concepts and new applications including QIM introduced *Digital watermark embedding is given a complete update with new processes and applications

1,773 citations

Journal ArticleDOI
TL;DR: The experimental results for many standard test images show that prediction-error expansion doubles the maximum embedding capacity when compared to difference expansion, and there is a significant improvement in the quality of the watermarked image, especially at moderate embedding capacities.
Abstract: Reversible watermarking enables the embedding of useful information in a host signal without any loss of host information. Tian's difference-expansion technique is a high-capacity, reversible method for data embedding. However, the method suffers from undesirable distortion at low embedding capacities and lack of capacity control due to the need for embedding a location map. We propose a histogram shifting technique as an alternative to embedding the location map. The proposed technique improves the distortion performance at low embedding capacities and mitigates the capacity control problem. We also propose a reversible data-embedding technique called prediction-error expansion. This new technique better exploits the correlation inherent in the neighborhood of a pixel than the difference-expansion scheme. Prediction-error expansion and histogram shifting combine to form an effective method for data embedding. The experimental results for many standard test images show that prediction-error expansion doubles the maximum embedding capacity when compared to difference expansion. There is also a significant improvement in the quality of the watermarked image, especially at moderate embedding capacities

1,229 citations


Cites background from "Reversible watermark using the diff..."

  • ...The data embedding is done by expanding these features in order to create vacancies into which the data bits are embedded....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a reversible or lossless watermarking algorithm for images without using a location map in most cases that employs prediction errors to embed data into an image.
Abstract: This paper presents a reversible or lossless watermarking algorithm for images without using a location map in most cases. This algorithm employs prediction errors to embed data into an image. A sorting technique is used to record the prediction errors based on magnitude of its local variance. Using sorted prediction errors and, if needed, though rarely, a reduced size location map allows us to embed more data into the image with less distortion. The performance of the proposed reversible watermarking scheme is evaluated using different images and compared with four methods: those of Kamstra and Heijmans, Thodi and Rodriguez, and Lee et al. The results clearly indicate that the proposed scheme can embed more data with less distortion.

773 citations


Cites background from "Reversible watermark using the diff..."

  • ...Later Alattar generalized his idea for a cell with n pixels in [3]....

    [...]

Journal ArticleDOI
Lixin Luo1, Zhenyong Chen1, Ming Chen1, Xiao Zeng1, Zhang Xiong1 
TL;DR: A novel reversible watermarking scheme using an interpolation technique, which can embed a large amount of covert data into images with imperceptible modification, and can provide greater payload capacity and higher image fidelity compared with other state-of-the-art schemes.
Abstract: Watermarking embeds information into a digital signal like audio, image, or video. Reversible image watermarking can restore the original image without any distortion after the hidden data is extracted. In this paper, we present a novel reversible watermarking scheme using an interpolation technique, which can embed a large amount of covert data into images with imperceptible modification. Different from previous watermarking schemes, we utilize the interpolation-error, the difference between interpolation value and corresponding pixel value, to embed bit ?1? or ?0? by expanding it additively or leaving it unchanged. Due to the slight modification of pixels, high image quality is preserved. Experimental results also demonstrate that the proposed scheme can provide greater payload capacity and higher image fidelity compared with other state-of-the-art schemes.

645 citations


Cites methods from "Reversible watermark using the diff..."

  • ...[ 4 ] J. Shashank, P. Kowshik, K. Srinathan, and C. Jawahar, “Private con-...

    [...]

  • ...And for a pixel vector or a pixel block of pixels, as presented in [ 4 ], the number of differences is of the number of total pixels, which means that pixels are spent to find differences....

    [...]

  • ...Later on, Alattar [ 4 ] extended Tian’s scheme by a generalized DE method which hid several bits in the DE of vectors of adjacent pixels....

    [...]

Journal ArticleDOI
TL;DR: A binary tree structure is exploited to solve the problem of communicating pairs of peak points and distribution of pixel differences is used to achieve large hiding capacity while keeping the distortion low.
Abstract: In this letter, we present a reversible data hiding scheme based on histogram modification. We exploit a binary tree structure to solve the problem of communicating pairs of peak points. Distribution of pixel differences is used to achieve large hiding capacity while keeping the distortion low. We also adopt a histogram shifting technique to prevent overflow and underflow. Performance comparisons with other existing schemes are provided to demonstrate the superiority of the proposed scheme.

550 citations


Cites background or methods from "Reversible watermark using the diff..."

  • ...Schemes [8], [9] achieved performance similar to our proposed scheme; however, their algorithms were performed in the wavelet domain....

    [...]

  • ...6 compares the pure payload of the “Lena” image in b/pixel versus image quality in PSNR delivered by the proposed scheme and other existing reversible schemes [7]–[9], [18]–[20]....

    [...]

  • ...Tian’s technique has been extended recently in [9]–[11]....

    [...]

  • ...Note that the proposed scheme and schemes [7], [18]–[20] are proposed in the spatial domain, whereas schemes [8], [9] are presented in the transform domain....

    [...]

  • ...Alattar [9] Proposed scheme with repeated passes...

    [...]

References
More filters
Book
30 Nov 2001
TL;DR: This work has specific applications for those involved in the development of software and hardware solutions for multimedia, internet, and medical imaging applications.
Abstract: This is nothing less than a totally essential reference for engineers and researchers in any field of work that involves the use of compressed imagery. Beginning with a thorough and up-to-date overview of the fundamentals of image compression, the authors move on to provide a complete description of the JPEG2000 standard. They then devote space to the implementation and exploitation of that standard. The final section describes other key image compression systems. This work has specific applications for those involved in the development of software and hardware solutions for multimedia, internet, and medical imaging applications.

3,115 citations

Journal ArticleDOI
TL;DR: This work explores both traditional and novel techniques for addressing the data-hiding process and evaluates these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.
Abstract: Data hiding, a form of steganography, embeds data into digital media for the purpose of identification, annotation, and copyright. Several constraints affect this process: the quantity of data to be hidden, the need for invariance of these data under conditions where a "host" signal is subject to distortions, e.g., lossy compression, and the degree to which the data must be immune to interception, modification, or removal by a third party. We explore both traditional and novel techniques for addressing the data-hiding process and evaluate these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.

3,037 citations


"Reversible watermark using the diff..." refers background in this paper

  • ...Unfortunately, watermarking algorithms are often highly adaptive and employ some kind of nonlinearity to optimize their performance....

    [...]

Book
24 Oct 2001
TL;DR: Digital Watermarking covers the crucial research findings in the field and explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied.
Abstract: Digital watermarking is a key ingredient to copyright protection. It provides a solution to illegal copying of digital material and has many other useful applications such as broadcast monitoring and the recording of electronic transactions. Now, for the first time, there is a book that focuses exclusively on this exciting technology. Digital Watermarking covers the crucial research findings in the field: it explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied. As a result, additional groundwork is laid for future developments in this field, helping the reader understand and anticipate new approaches and applications.

2,849 citations

Proceedings ArticleDOI
10 Dec 2002
TL;DR: A prediction-based conditional entropy coder which utilizes static portions of the host as side-information improves the compression efficiency, and thus the lossless data embedding capacity.
Abstract: We present a novel reversible (lossless) data hiding (embedding) technique, which enables the exact recovery of the original host signal upon extraction of the embedded information. A generalization of the well-known LSB (least significant bit) modification is proposed as the data embedding method, which introduces additional operating points on the capacity-distortion curve. Lossless recovery of the original is achieved by compressing portions of the signal that are susceptible to embedding distortion, and transmitting these compressed descriptions as a part of the embedded payload. A prediction-based conditional entropy coder which utilizes static portions of the host as side-information improves the compression efficiency, and thus the lossless data embedding capacity.

1,126 citations


"Reversible watermark using the diff..." refers methods in this paper

  • ...Fridrich also extended the technique to JPEG-compressed images [8] and GIF and PNG palette images [9], and he introduced a more efficient (than [7]) RS-embedding method for bitmap images....

    [...]

Journal ArticleDOI
TL;DR: This paper introduces a new paradigm for data embedding in images (lossless dataembedding) that has the property that the distortion due to embedding can be completely removed from the watermarked image after the embedded data has been extracted.
Abstract: One common drawback of virtually all current data embedding methods is the fact that the original image is inevitably distorted due to data embedding itself. This distortion typically cannot be removed completely due to quantization, bit-replacement, or truncation at the grayscales 0 and 255. Although the distortion is often quite small and perceptual models are used to minimize its visibility, the distortion may not be acceptable for medical imagery (for legal reasons) or for military images inspected under nonstandard viewing conditions (after enhancement or extreme zoom). In this paper, we introduce a new paradigm for data embedding in images (lossless data embedding) that has the property that the distortion due to embedding can be completely removed from the watermarked image after the embedded data has been extracted. We present lossless embedding methods for the uncompressed formats (BMP, TIFF) and for the JPEG format. We also show how the concept of lossless data embedding can be used as a powerful tool to achieve a variety of nontrivial tasks, including lossless authentication using fragile watermarks, steganalysis of LSB embedding, and distortion-free robust watermarking.

702 citations


"Reversible watermark using the diff..." refers background in this paper

  • ...The process can be reversed to obtain the original host image....

    [...]