scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles

01 Jan 2013-IEEE Transactions on Power Electronics (IEEE)-Vol. 28, Iss: 5, pp 2151-2169
TL;DR: In this paper, the authors present the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrid vehicles and classify them into off-board and on-board types with unidirectional or bidirectional power flow.
Abstract: This paper reviews the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrids. Charger systems are categorized into off-board and on-board types with unidirectional or bidirectional power flow. Unidirectional charging limits hardware requirements and simplifies interconnection issues. Bidirectional charging supports battery energy injection back to the grid. Typical on-board chargers restrict power because of weight, space, and cost constraints. They can be integrated with the electric drive to avoid these problems. The availability of charging infrastructure reduces on-board energy storage requirements and costs. On-board charger systems can be conductive or inductive. An off-board charger can be designed for high charging rates and is less constrained by size and weight. Level 1 (convenience), Level 2 (primary), and Level 3 (fast) power levels are discussed. Future aspects such as roadbed charging are presented. Various power level chargers and infrastructure configurations are presented, compared, and evaluated based on amount of power, charging time and location, cost, equipment, and other factors.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this review, the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them are summarized and perspectives on their research and technological future prospects are presented.
Abstract: Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

371 citations

Journal ArticleDOI
TL;DR: A comprehensive review of existing technological solutions for wireless power transfer used in electric vehicle battery chargers is given in this article, where the concept of each solution is thoroughly reviewed and the feasibility is evaluated considering the present limitations in power electronics technology, cost and consumer acceptance.
Abstract: In this study, a comprehensive review of existing technological solutions for wireless power transfer used in electric vehicle battery chargers is given. The concept of each solution is thoroughly reviewed and the feasibility is evaluated considering the present limitations in power electronics technology, cost and consumer acceptance. In addition, the challenges and advantages of each technology are discussed. Finally, a thorough comparison is made and a proposed mixed conductive/wireless charging system solution is suggested to solve the inherent existing problems.

370 citations

Journal ArticleDOI
TL;DR: The concept of “commutation inductance(s)” is shown to be an essential element in achieving full-operating-range ZVS, taking into account the amount of charge that is required to charge the nonlinear parasitic output capacitances of the switches during commutation.
Abstract: A comprehensive procedure for the derivation of optimal, full-operating-range zero voltage switching (ZVS) modulation schemes for single-phase, single-stage, bidirectional and isolated dual active bridge (DAB) ac-dc converters is presented. The converter topology consists of a DAB dc-dc converter, receiving a rectified ac line voltage via a synchronous rectifier. The DAB comprises primary and secondary side full bridges, linked by a high-frequency isolation transformer and a series inductor. ZVS modulation schemes previously proposed in the literature are either based on current-based or energy-based ZVS analyses. The procedure outlined in this paper for the calculation of optimal DAB modulation schemes (i.e., combined phase-shift, duty-cycle, and switching frequency modulation) relies on a novel, more accurate, current-dependent charge-based ZVS analysis, taking into account the amount of charge that is required to charge the nonlinear parasitic output capacitances of the switches during commutation. Thereby, the concept of “commutation inductance(s)” is shown to be an essential element in achieving full-operating-range ZVS. The proposed methods are applied to a 3.7 kW, bidirectional, and unity power factor electric vehicle battery charger which interfaces a 400 V dc-bus with the 230 Vac, 50-Hz utility grid. Experimental results obtained from a high-power-density, high-efficiency converter prototype are given to validate the theoretical analysis and practical feasibility of the proposed strategy.

356 citations


Cites background from "Review of Battery Charger Topologie..."

  • ...of applications such as chargers for plug-in hybrid electrical vehicles and battery electric vehicles [1], [2], interfaces for residential dc distribution systems and energy storage systems...

    [...]

Journal ArticleDOI
Junjun Deng, Siqi Li1, Sideng Hu1, Chunting Chris Mi1, Ruiqing Ma 
TL;DR: An inductor-inductor-capacitor (LLC) resonant dc-dc converter design procedure for an onboard lithium-ion battery charger of a plug-in hybrid electric vehicle (PHEV) is presented.
Abstract: In this paper, an inductor–inductor–capacitor (LLC) resonant dc–dc converter design procedure for an onboard lithium-ion battery charger of a plug-in hybrid electric vehicle (PHEV) is presented. Unlike traditional resistive load applications, the characteristic of a battery load is nonlinear and highly related to the charging profiles. Based on the features of an LLC converter and the characteristics of the charging profiles, the design considerations are studied thoroughly. The worst-case conditions for primary-side zero-voltage switching (ZVS) operation are analytically identified based on fundamental harmonic approximation when a constant maximum power (CMP) charging profile is implemented. Then, the worst-case operating point is used as the design targeted point to ensure soft-switching operation globally. To avoid the inaccuracy of fundamental harmonic approximation approach in the below-resonance region, the design constraints are derived based on a specific operation mode analysis. Finally, a step-by-step design methodology is proposed and validated through experiments on a prototype converting 400 V from the input to an output voltage range of 250–450 V at 3.3 kW with a peak efficiency of 98.2%.

356 citations

Journal ArticleDOI
TL;DR: In this article, an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs).
Abstract: This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and the system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.

355 citations


Cites background from "Review of Battery Charger Topologie..."

  • ...have a higher likelihood of widespread adoption due to the prevalence of suitable power outlets and the lack of infrastructure for higher power fast chargers [15]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a coordinated charging strategy to minimize the power losses and to maximize the main grid load factor of the plug-in hybrid electric vehicles (PHEVs).
Abstract: Alternative vehicles, such as plug-in hybrid electric vehicles, are becoming more popular The batteries of these plug-in hybrid electric vehicles are to be charged at home from a standard outlet or on a corporate car park These extra electrical loads have an impact on the distribution grid which is analyzed in terms of power losses and voltage deviations Without coordination of the charging, the vehicles are charged instantaneously when they are plugged in or after a fixed start delay This uncoordinated power consumption on a local scale can lead to grid problems Therefore, coordinated charging is proposed to minimize the power losses and to maximize the main grid load factor The optimal charging profile of the plug-in hybrid electric vehicles is computed by minimizing the power losses As the exact forecasting of household loads is not possible, stochastic programming is introduced Two main techniques are analyzed: quadratic and dynamic programming

2,601 citations

Journal ArticleDOI
TL;DR: In this paper, the authors defined the three vehicle types that can produce V2G power and the power markets they can sell into, and developed equations to calculate the capacity for grid power from three types of electric drive vehicles.

2,128 citations


Additional excerpts

  • ...[173]–[175]....

    [...]

Book
26 Feb 2018
TL;DR: In this paper, the authors present an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented.
Abstract: "This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.

1,995 citations

Journal ArticleDOI
TL;DR: This paper presents an exhaustive review of three-phase improved power quality AC-DC converters configurations, control strategies, selection of components, comparative factors, recent trends, their suitability, and selection for specific applications.
Abstract: Solid-state switch-mode rectification converters have reached a matured level for improving power quality in terms of power-factor correction (PFC), reduced total harmonic distortion at input AC mains and precisely regulated DC output in buck, boost, buck-boost and multilevel modes with unidirectional and bidirectional power flow. This paper deals with a comprehensive review of improved power quality converters (IPQCs) configurations, control approaches, design features, selection of components, other related considerations, and their suitability and selection for specific applications. It is targeted to provide a wide spectrum on the status of IPQC technology to researchers, designers and application engineers working on switched-mode AC-DC converters. A classified list of more than 450 research publications on the state of art of IPQC is also given for a quick reference.

1,691 citations


"Review of Battery Charger Topologie..." refers background or methods in this paper

  • ...Various topologies and schemes have been reported for both single-phase and three-phase chargers [15], [48]....

    [...]

  • ...Today, these converters are implemented in a single stage to limit cost, weight, volume, and losses [15]....

    [...]

  • ...Three-level diode-clamped bidirectional charger circuit, as in [15]...

    [...]

  • ...tional charging is a logical first step because it limits hardware requirements, simplifies interconnection issues, and tends to reduce battery degradation [15], [16]....

    [...]

Journal ArticleDOI
TL;DR: Simulation and experimental results show the superiority of the back-to-back diode-clamped converter over two-level pulsewidth-modulation-based drives.
Abstract: This paper presents transformerless multilevel power converters as an application for high-power and/or high-voltage electric motor drives. Multilevel converters: (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference or common-mode voltage; and (3) are suitable for large voltampere-rated motor drives and high voltages. The cascade inverter is a natural fit for large automotive all-electric drives because it uses several levels of DC voltage sources, which would be available from batteries or fuel cells. The back-to-back diode-clamped converter is ideal where a source of AC voltage is available, such as in a hybrid electric vehicle. Simulation and experimental results show the superiority of these two converters over two-level pulsewidth-modulation-based drives.

1,398 citations