scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles

01 Jan 2013-IEEE Transactions on Power Electronics (IEEE)-Vol. 28, Iss: 5, pp 2151-2169
TL;DR: In this paper, the authors present the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrid vehicles and classify them into off-board and on-board types with unidirectional or bidirectional power flow.
Abstract: This paper reviews the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrids. Charger systems are categorized into off-board and on-board types with unidirectional or bidirectional power flow. Unidirectional charging limits hardware requirements and simplifies interconnection issues. Bidirectional charging supports battery energy injection back to the grid. Typical on-board chargers restrict power because of weight, space, and cost constraints. They can be integrated with the electric drive to avoid these problems. The availability of charging infrastructure reduces on-board energy storage requirements and costs. On-board charger systems can be conductive or inductive. An off-board charger can be designed for high charging rates and is less constrained by size and weight. Level 1 (convenience), Level 2 (primary), and Level 3 (fast) power levels are discussed. Future aspects such as roadbed charging are presented. Various power level chargers and infrastructure configurations are presented, compared, and evaluated based on amount of power, charging time and location, cost, equipment, and other factors.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
11 Jan 2018
TL;DR: A review of latest research contributions regarding the evolution of circuit topologies, operational challenges, control schemes, and fault-tolerant strategies of the MMC.
Abstract: The power converters based on a modular structure have gained importance for electric transportation applications, including electric vehicles (EVs), EV charging stations, railway traction, and electric ships. Modular multilevel converters (MMCs) are recognized as one of the promising topologies to improve the energy conversion efficiency and fault-tolerant ability of power conversion systems. This paper aims at a review of latest research contributions regarding the evolution of circuit topologies, operational challenges, control schemes, and fault-tolerant strategies of the MMC. Finally, the current state of the art, opportunities and the future perspective of MMC in electric transportation applications are addressed.

231 citations


Cites background from "Review of Battery Charger Topologie..."

  • ...eliminate cables and cords, and provide freedom from environmental and tripping hazards [49], [50]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of EVs and renewable energy sources (RESs) in the presence of smart grid technologies, and the interaction with renewable energy is reviewed.
Abstract: Electric vehicles (EVs) represent one of the most promising technologies to green the transportation systems. An important issue is that high penetration of EVs brings heavy electricity demand to the power grid. One effective way to alleviate the impact is to integrate local power generation such as renewable energy sources (RESs) into charging infrastructure. Because of the intermittent and indispatchable nature of RESs, it becomes very challenging to coordinate EVs charging with other grid load and renewable generation. In this paper, EVs charging problem in the presence of smart grid technologies is investigated, and the interaction with renewable energy is reviewed. An overview about EVs and RESs is first presented, which mainly introduces major types of EVs and renewable energy estimation methods. Then, according to the objectives, the existing research works are divided into three categories: cost-aware, efficiency-aware, and emissions-aware interactions between EVs and RESs. Each category׳s discussion includes the description of core ideas, summarization of solutions, and comparison between different works. Finally, some key open issues about EVs interacting with RESs are given and some possible solutions are also discussed.

229 citations

Journal ArticleDOI
TL;DR: In this paper, a symmetrical half-bridge circuit was proposed to absorb the ripple power in a single-phase dc/dc system, where the only additional components are a pair of switches and a small filtering inductor.
Abstract: Single-phase ac/dc or dc/ac systems are inherently subject to the harmonic disturbance that is caused by the well-known double-line frequency ripple power. This issue can be eased through the installation of bulky electrolytic capacitors in the dc link. Unfortunately, such passive filtering approach may inevitably lead to low power density and limited system lifetime. An alternative approach is to use active power decoupling so that the ripple power can be diverted into other energy storage devices to gain an improved system performance. Nevertheless, all existing active methods have to introduce extra energy storage elements, either inductors or film capacitors in the system to store the ripple power, and this again leads to increased component costs. In view of this, this paper presents a symmetrical half-bridge circuit which utilizes the dc-link capacitors to absorb the ripple power, and the only additional components are a pair of switches and a small filtering inductor. A design example is presented and the proposed circuit concept is also verified with simulation and experimental results. It shows that at least ten times capacitance reduction can be achieved with the proposed active power decoupling method, and both the input current and output voltage of the converter can be well regulated even when very small dc-link capacitors are employed.

227 citations


Cites background from "Review of Battery Charger Topologie..."

  • ...Example applications are front-end power factor correction (PFC) converters in consumer power supplies, on-board chargers for plug-in hybrid electric vehicles (PHEV), and 5kW (or less) grid-connected photovoltaic (PV) inverters for distributed power generation [1-5]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for electric vehicles, where each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter.
Abstract: In electric vehicle (EV) energy storage systems, a large number of battery cells are usually connected in series to enhance the output voltage for motor driving. The difference in electrochemical characters will cause state-of-charge (SOC) and terminal voltage imbalance between different cells. In this paper, a hybrid cascaded multilevel converter which involves both battery energy management and motor drives is proposed for EV. In the proposed topology, each battery cell can be controlled to be connected into the circuit or to be bypassed by a half-bridge converter. All half-bridges are cascaded to output a staircase shape dc voltage. Then, an H-bridge converter is used to change the direction of the dc bus voltages to make up ac voltages. The outputs of the converter are multilevel voltages with less harmonics and lower dv/dt, which is helpful to improve the performance of the motor drives. By separate control according to the SOC of each cell, the energy utilization ratio of the batteries can be improved. The imbalance of terminal voltage and SOC can also be avoided, fault-tolerant can be easily realized by modular cascaded circuit, so the life of the battery stack will be extended. Simulation and experiments are implemented to verify the performance of the proposed converter.

227 citations


Cites background from "Review of Battery Charger Topologie..."

  • ...In this circuit, an additional inverter is needed for the motor drive and a charger is usually needed for the battery recharge [29]....

    [...]

Journal ArticleDOI
TL;DR: Simulation and experimental results are presented to validate the proposed charging station architecture and provide complementary balancing capabilities by the use of an additional NPC leg acting as a bidirectional dc-dc stage, simulating the minimal load condition and allowing the modulator to keep the control on the dc voltages under any load scenario.
Abstract: This paper proposes a novel architecture for plug-in electric vehicles (PEVs) dc charging station at the megawatt level, through the use of a grid-tied neutral point clamped (NPC) converter. The proposed bipolar dc structure reduces the step-down effort on the dc–dc fast chargers. In addition, this paper proposes a balancing mechanism that allows handling any difference on the dc loads while keeping the midpoint voltage accurately regulated. By formally defining the unbalance operation limit, the proposed control scheme is able to provide complementary balancing capabilities by the use of an additional NPC leg acting as a bidirectional dc–dc stage, simulating the minimal load condition and allowing the modulator to keep the control on the dc voltages under any load scenario. The proposed solution enables fast charging for PEVs concentrating several charging units into a central grid-tied converter. In this paper, simulation and experimental results are presented to validate the proposed charging station architecture.

223 citations


Cites background from "Review of Battery Charger Topologie..."

  • ...To start with, the power ratings involved make it unlikely to be adopted as an on-board solution, due to the requirement for larger, heavier, and costly additional equipment [6]....

    [...]

  • ...This is mainly due to the limited mileage capacity offered by the batteries and their long charging processes (over 4 h) using conventional Level-I and Level-II chargers [1], [5], [6]....

    [...]

  • ...A key factor in a larger PEV penetration thus is the development and availability of fast charging architectures that will enable replenishing the batteries in reduced times, comparable to a stop at a gas station [6]–[8]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a coordinated charging strategy to minimize the power losses and to maximize the main grid load factor of the plug-in hybrid electric vehicles (PHEVs).
Abstract: Alternative vehicles, such as plug-in hybrid electric vehicles, are becoming more popular The batteries of these plug-in hybrid electric vehicles are to be charged at home from a standard outlet or on a corporate car park These extra electrical loads have an impact on the distribution grid which is analyzed in terms of power losses and voltage deviations Without coordination of the charging, the vehicles are charged instantaneously when they are plugged in or after a fixed start delay This uncoordinated power consumption on a local scale can lead to grid problems Therefore, coordinated charging is proposed to minimize the power losses and to maximize the main grid load factor The optimal charging profile of the plug-in hybrid electric vehicles is computed by minimizing the power losses As the exact forecasting of household loads is not possible, stochastic programming is introduced Two main techniques are analyzed: quadratic and dynamic programming

2,601 citations

Journal ArticleDOI
TL;DR: In this paper, the authors defined the three vehicle types that can produce V2G power and the power markets they can sell into, and developed equations to calculate the capacity for grid power from three types of electric drive vehicles.

2,128 citations


Additional excerpts

  • ...[173]–[175]....

    [...]

Book
26 Feb 2018
TL;DR: In this paper, the authors present an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented.
Abstract: "This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.

1,995 citations

Journal ArticleDOI
TL;DR: This paper presents an exhaustive review of three-phase improved power quality AC-DC converters configurations, control strategies, selection of components, comparative factors, recent trends, their suitability, and selection for specific applications.
Abstract: Solid-state switch-mode rectification converters have reached a matured level for improving power quality in terms of power-factor correction (PFC), reduced total harmonic distortion at input AC mains and precisely regulated DC output in buck, boost, buck-boost and multilevel modes with unidirectional and bidirectional power flow. This paper deals with a comprehensive review of improved power quality converters (IPQCs) configurations, control approaches, design features, selection of components, other related considerations, and their suitability and selection for specific applications. It is targeted to provide a wide spectrum on the status of IPQC technology to researchers, designers and application engineers working on switched-mode AC-DC converters. A classified list of more than 450 research publications on the state of art of IPQC is also given for a quick reference.

1,691 citations


"Review of Battery Charger Topologie..." refers background or methods in this paper

  • ...Various topologies and schemes have been reported for both single-phase and three-phase chargers [15], [48]....

    [...]

  • ...Today, these converters are implemented in a single stage to limit cost, weight, volume, and losses [15]....

    [...]

  • ...Three-level diode-clamped bidirectional charger circuit, as in [15]...

    [...]

  • ...tional charging is a logical first step because it limits hardware requirements, simplifies interconnection issues, and tends to reduce battery degradation [15], [16]....

    [...]

Journal ArticleDOI
TL;DR: Simulation and experimental results show the superiority of the back-to-back diode-clamped converter over two-level pulsewidth-modulation-based drives.
Abstract: This paper presents transformerless multilevel power converters as an application for high-power and/or high-voltage electric motor drives. Multilevel converters: (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference or common-mode voltage; and (3) are suitable for large voltampere-rated motor drives and high voltages. The cascade inverter is a natural fit for large automotive all-electric drives because it uses several levels of DC voltage sources, which would be available from batteries or fuel cells. The back-to-back diode-clamped converter is ideal where a source of AC voltage is available, such as in a hybrid electric vehicle. Simulation and experimental results show the superiority of these two converters over two-level pulsewidth-modulation-based drives.

1,398 citations