scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles

01 Jan 2013-IEEE Transactions on Power Electronics (IEEE)-Vol. 28, Iss: 5, pp 2151-2169
TL;DR: In this paper, the authors present the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrid vehicles and classify them into off-board and on-board types with unidirectional or bidirectional power flow.
Abstract: This paper reviews the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrids. Charger systems are categorized into off-board and on-board types with unidirectional or bidirectional power flow. Unidirectional charging limits hardware requirements and simplifies interconnection issues. Bidirectional charging supports battery energy injection back to the grid. Typical on-board chargers restrict power because of weight, space, and cost constraints. They can be integrated with the electric drive to avoid these problems. The availability of charging infrastructure reduces on-board energy storage requirements and costs. On-board charger systems can be conductive or inductive. An off-board charger can be designed for high charging rates and is less constrained by size and weight. Level 1 (convenience), Level 2 (primary), and Level 3 (fast) power levels are discussed. Future aspects such as roadbed charging are presented. Various power level chargers and infrastructure configurations are presented, compared, and evaluated based on amount of power, charging time and location, cost, equipment, and other factors.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive review and assessment of the latest research and advancement of electric vehicles (EVs) interaction with smart grid portraying the future electric power system model.
Abstract: This paper presents a comprehensive review and assessment of the latest research and advancement of electric vehicles (EVs) interaction with smart grid portraying the future electric power system model. The concept goal of the smart grid along with the future deployment of the EVs puts forward various challenges in terms of electric grid infrastructure, communication and control. Following an intensive review on advanced smart metering and communication infrastructures, the strategy for integrating the EVs into the electric grid is presented. Various EV smart charging technologies are also extensively examined with the perspective of their potential, impacts and limitations under the vehicle-to-grid (V2G) phenomenon. Moreover, the high penetration of renewable energy sources (wind and photovoltaic solar) is soaring up into the power system. However, their intermittent power output poses different challenges on the planning, operation and control of the power system networks. On the other hand, the deployment of EVs in the energy market can compensate for the fluctuations of the electric grid. In this context, a literature review on the integration of the renewable energy and the latest feasible solution using EVs with the insight of the promising research gap to be covered up are investigated. Furthermore, the feasibility of the smart V2G system is thoroughly discussed. In this paper, the EVs interactions with the smart grid as the future energy system model are extensively discussed and research gap is revealed for the possible solutions.

793 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive review of existing compensation topologies for the loosely coupled transformer and discusses the compensation requirements for achieving the maximum efficiency according to different WPT application areas.
Abstract: Wireless power transfer (WPT) is an emerging technology that can realize electric power transmission over certain distances without physical contact, offering significant benefits to modern automation systems, medical applications, consumer electronics, etc. This paper provides a comprehensive review of existing compensation topologies for the loosely coupled transformer. Compensation topologies are reviewed and evaluated based on their basic and advanced functions. Individual passive resonant networks used to achieve constant (load-independent) voltage or current output are analyzed and summarized. Popular WPT compensation topologies are given as application examples, which can be regarded as the combination of multiple blocks of resonant networks. Analyses of the input zero phase angle and soft switching are conducted as well. This paper also discusses the compensation requirements for achieving the maximum efficiency according to different WPT application areas.

659 citations

Journal ArticleDOI
03 Apr 2019
TL;DR: In this article, the authors set the extensive market penetration of lithium-ion battery-powered EVs as an ultimate objective and then discussed recent advances and challenges of electric automobiles, mainly focusing on critical element resources, present and future EV markets, and the cost and performance of Li-ion batteries.
Abstract: Lithium-ion batteries (LIBs) are currently the most suitable energy storage device for powering electric vehicles (EVs) owing to their attractive properties including high energy efficiency, lack of memory effect, long cycle life, high energy density and high power density. These advantages allow them to be smaller and lighter than other conventional rechargeable batteries such as lead–acid batteries, nickel–cadmium batteries (Ni–Cd) and nickel–metal hydride batteries (Ni–MH). Modern EVs, however, still suffer from performance barriers (range, charging rate, lifetime, etc.) and technological barriers (high cost, safety, reliability, etc.), limiting their widespread adoption. Given these facts, this review sets the extensive market penetration of LIB-powered EVs as an ultimate objective and then discusses recent advances and challenges of electric automobiles, mainly focusing on critical element resources, present and future EV markets, and the cost and performance of LIBs. Finally, novel battery chemistries and technologies including high-energy electrode materials and all-solid-state batteries are also evaluated for their potential capabilities in next-generation long-range EVs.

645 citations

Journal ArticleDOI
01 Mar 2018
TL;DR: In this paper, a comprehensive review of charging pad, power electronics configurations, compensation networks, controls, and standards is presented, along with a detailed analysis of the charging range of EVs.
Abstract: More than a century-old gasoline internal combustion engine is a major contributor to greenhouse gases. Electric vehicles (EVs) have the potential to achieve eco-friendly transportation. However, the major limitation in achieving this vision is the battery technology. It suffers from drawbacks such as high cost, rare material, low energy density, and large weight. The problems related to battery technology can be addressed by dynamically charging the EV while on the move. In-motion charging can reduce the battery storage requirement, which could significantly extend the driving range of an EV. This paper reviews recent advances in stationary and dynamic wireless charging of EVs. A comprehensive review of charging pad, power electronics configurations, compensation networks, controls, and standards is presented.

553 citations


Cites background or methods from "Review of Battery Charger Topologie..."

  • ...Most commonly used PFC configuration is the interleaved boost PFC circuit for EV chargers [8]....

    [...]

  • ...95), and the total harmonic distortion (THD) should be less than 5% [8], [42]....

    [...]

  • ...fast battery charging techniques to reduce the charging time to 20–30 min [8], [10]....

    [...]

  • ...The problem with the conductive charging of EV is that it requires heavy gauge cables to connect to EV which are difficult to handle, has tripping hazards, and are prone to vandalism [7], [8]....

    [...]

Journal ArticleDOI
01 Mar 2018
TL;DR: This paper provides a comprehensive, state-of-the-art review of all the wireless charging technologies for electric vehicle (EVs), characteristics and standards available in the open literature, as well as sustainable implications and potential safety measures.
Abstract: The profitable commercialization and fast adoption of electrified transportation require fast, economical, and reliable charging infrastructure. This paper provides a comprehensive, state-of-the-art review of all the wireless charging technologies for electric vehicle (EVs), characteristics and standards available in the open literature, as well as sustainable implications and potential safety measures. A comparative overview of conductive charging and wireless charging is followed by a detailed description of static wireless charging, dynamic wireless charging (DWC), and quasi-DWC. Roadblocks, such as coil design of power pads, frequency, power level limitations, misalignment, and potential solutions, are outlined. The standards are then tabulated to deliver a coherent view of the current status, followed by an explanation of the crux of these standards. Necessity and progress in the standardization of wireless charging systems are then deliberated. Vehicle-to-grid application of wireless charging is reviewed followed by an overview of economic analysis, social implications, the effect on sustainability, and safety aspects to evaluate the commercial feasibility of wireless charging. This paper will be highly beneficial to research entities, industry professionals, and investment representatives as a ready reference of the wireless charging system of EVs, with information on important characteristics and standards.

542 citations


Cites background from "Review of Battery Charger Topologie..."

  • ...Deployment of efficient and reliable charging infrastructure at short distances would support an unrestricted range for EVs [31]....

    [...]

  • ...AC level 1 charger is <2 kW, ac level 2 charger is 4–20 kW, and dc level 3 has more than 20–120 kW [31]–[33]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This paper presents a future perspective of industrial information technologies to accelerate the market introduction and penetration of advanced electric drive vehicles and provides a comprehensive survey of the EVs in the field of industrial informatics systems.
Abstract: Economics and environmental incentives, as well as advances in technology, are reshaping the traditional view of industrial systems. The anticipation of a large penetration of plug-in hybrid electric vehicles (PHEVs) and plug-in electric vehicles (PEVs) into the market brings up many technical problems that are highly related to industrial information technologies within the next ten years. There is a need for an in-depth understanding of the electrification of transportation in the industrial environment. It is important to consolidate the practical and the conceptual knowledge of industrial informatics in order to support the emerging electric vehicle (EV) technologies. This paper presents a comprehensive overview of the electrification of transportation in an industrial environment. In addition, it provides a comprehensive survey of the EVs in the field of industrial informatics systems, namely: 1) charging infrastructure and PHEV/PEV batteries; 2) intelligent energy management; 3) vehicle-to-grid; and 4) communication requirements. Moreover, this paper presents a future perspective of industrial information technologies to accelerate the market introduction and penetration of advanced electric drive vehicles.

720 citations


Additional excerpts

  • ...sion standards [58]....

    [...]

Journal ArticleDOI
TL;DR: Simulations on a hypothetical group of 10 000 commuter EVs in the Pacific Northwest verify that the optimal algorithms increase aggregator profits while reducing system load impacts and customer costs.
Abstract: Vehicle-to-grid (V2G) has been proposed as a way to increase the adoption rate of electric vehicles (EVs). Unidirectional V2G is especially attractive because it requires little if any additional infrastructure other than communication between the EV and an aggregator. The aggregator in turn combines the capacity of many EVs to bid into energy markets. In this work an algorithm for unidirectional regulation is developed for use by an aggregator. Several smart charging algorithms are used to set the point about which the rate of charge varies while performing regulation. An aggregator profit maximization algorithm is formulated with optional system load and price constraints analogous to the smart charging algorithms. Simulations on a hypothetical group of 10 000 commuter EVs in the Pacific Northwest verify that the optimal algorithms increase aggregator profits while reducing system load impacts and customer costs.

716 citations


"Review of Battery Charger Topologie..." refers background in this paper

  • ...most utility objectives while avoiding cost, performance, and safety concerns associated with bidirectional chargers [18], [85]....

    [...]

Journal ArticleDOI
03 Oct 1999
TL;DR: In this article, the authors investigated a hybrid multilevel power conversion system for high performance, high power applications, which consists of a hybrid seven-level inverter, a diode bridge rectifier and an IGBT rectifier per phase.
Abstract: Use of multilevel inverters is becoming popular in recent years for high power applications. Various topologies and modulation strategies have been investigated for utility and drive applications in literature. Trends in power semiconductor technology indicate a trade-off in the selection of power devices in terms of switching frequency and voltage sustaining capability. New power converter topologies permit modular realization of multilevel inverters using a hybrid approach involving integrated gate commutated thyristors (IGCT) and insulated gate bipolar transistors (IGBT) operating in synergism. This paper is devoted to the investigation of a hybrid multilevel power conversion system typically suitable for high performance, high power applications. This system designed for 4.16 kV, /spl ges/100 hp load comprises of a hybrid seven-level inverter, a diode bridge rectifier and an IGBT rectifier per phase. The IGBT rectifier is used on the utility side as a real power flow regulator to the low voltage converter and as a harmonic compensator for the high voltage converter. The hybrid seven-level inverter on the load side consists of a high voltage, slow switching IGCT inverter and a low voltage, fast switching IGBT inverter. By employing different devices under different operating conditions, it is shown that one can optimize the power conversion capability of entire system. A detailed analysis of a novel hybrid modulation technique for the inverter, which incorporates stepped synthesis in conjunction with variable pulse width of the consecutive steps is included. In addition, performance of a multilevel current regulated delta modulator as applied to the single phase full bridge IGBT rectifier is discussed. Detailed computer simulations accompanied with experimental verification are presented in the paper.

712 citations

Journal ArticleDOI
TL;DR: The steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies are shown, pointing out the best one in terms of minimum copper mass and proper stability conditions.
Abstract: Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies, pointing out the best one in terms of minimum copper mass and proper stability conditions. A new design factor K D is proposed to select the optimum configuration for each topology. Finally, the theoretical results are validated on a 2-kW prototype with a 15-cm air gap between coils.

655 citations


"Review of Battery Charger Topologie..." refers methods in this paper

  • ...[154] described a design process to select the parameters of a coreless inductively coupled power transfer (ICPT) device with a large air...

    [...]

Journal ArticleDOI
TL;DR: Results indicate that the proposed bidirectional IPT system is an ideal power interface for efficient and contactless integration of multiple hybrid or EVs into typical power networks.
Abstract: Demand for supplying contactless or wireless power for various applications, ranging from low-power biomedical implants to high-power battery charging systems, is on the rise. Inductive power transfer (IPT) is a well recognized technique through which power can be transferred from one system to another with no physical contacts. This paper presents a novel bidirectional IPT system, which is particularly suitable for applications such as plug-in electric vehicles (EVs) and vehicle-to-grid (V2G) systems, where two-way power transfer is advantageous. The proposed IPT system facilitates simultaneous and controlled charging or discharging of multiple EVs through loose magnetic coupling and without any physical connections. A mathematical model is presented to show that both the amount and direction of power flow between EVs or multiple systems can be controlled through either phase or/and magnitude modulation of voltages generated by converters of each system. The validity of the concept is verified by theoretical analysis, simulations, and experimental results of a 1.5-kW prototype bidirectional IPT system with a 4-cm air gap. Results indicate that the proposed system is an ideal power interface for efficient and contactless integration of multiple hybrid or EVs into typical power networks.

651 citations


"Review of Battery Charger Topologie..." refers background in this paper

  • ...Madawala and Thrimawithana [155] described a novel contactless power interface, which is based on IPT technology and suitable for bidirectional power transfer between a common dc bus and multiple electric or hybrid vehicles....

    [...]

  • ...Madawala and Thrimawithana [155] described a novel contactless power interface, which is based on IPT technology and suitable for bidirectional power transfer between a common dc...

    [...]