scispace - formally typeset
Search or ask a question

Review of Failures of Photovoltaic Modules

TL;DR: The international Task 13 expert team has summarized the literature as well as their knowledge and personal experiences on actual failures of PV modules, and introduces a signal transition method for the detection of defective circuits in installed PV modules.
Abstract: One key factor of reducing the costs of photovoltaic systems is to increase the reliability and the service life time of the PV modules. Today's statistics show degradation rates of the rated power for crystalline silicon PV modules of 0.8%/year Jordan11. To increase the reliability and the service life of PV modules one has to understand the challenges involved. For this reason, the international Task 13 expert team has summarized the literature as well as their knowledge and personal experiences on actual failures of PV modules. The target audience of this work is PV module designers, PV industry, engineering lines, test equipment developers, testing companies, technological research laboratories, standardisation committees, as well as national and regional planning authorities. In the first part, this document reports on the measurement methods which allow the identification and analysis of PV module failures. Currently, a great number of methods are available to characterise PV module failures outdoors and in labs. As well as using I-V characteristics as a diagnostic tool, we explain image based methods and visual inspection. For each method we explain the basis, indicate current best practice, and explain how to interpret the images. Three thermography methods are explained: thermography under steady state conditions, pulse thermography and lock-in thermography. The most commonly used of these methods is thermography under steady state conditions. Furthermore electroluminescence methods have become an increasingly popular standard lab approach for detecting failures in PV modules. 2A less common but easier to use method is UV fluorescence. This method can be used to detect module failures similar to those detected with thermography and electroluminescence techniques; however, the PV modules must be sited outdoors for at least one and a half years for the method to be effective. For visual documentation of module conditions in the field, we set up a standard which is now accepted and used by all authors documenting such tests. This standard format allows the documentation of visible module failures in standardised way and makes the data accessible for statistical evaluation. Furthermore we introduce a signal transition method for the detection of defective circuits in installed PV modules. All methods are linked to the PV module failures which are able to be found with these methods. In the second part, the most common failures of PV modules are described in detail. In particular these failures are: delamination, back sheet adhesion loss, junction box failure, frame breakage, EVA discolouration, cell cracks, snail tracks, burn marks, potential induced degradation, disconnected cell and string interconnect ribbons, defective bypass diodes; and special failures of thin-film modules, such as micro arcs at glued connectors, shunt hot spots, front glass breakage, and back contact degradation. Where possible, the origin of the failure is explained. A reference to the characterisation method is given to identify the failure. If available, statistics of the failure type in the field and from accelerating aging tests are shown. For each failure, a description of safety issues and the influence on the power loss is given, including typical follow-up failure modes. In the third part, new test methods are proposed for detection of PV module failures in the field. A special focus is made on mechanical tests because many problems have arisen in the last few years from the mechanical loading of modules. These mechanical loads occur during transportation and from snow loads on modules mounted on an incline. Furthermore, testing for UV degradation of PV modules, ammonia corrosion (sometimes found in roofs of stock breeding buildings) and potential induced degradation are described. The latter method caused some controversy within the international standardization committee until the finalization of this report because many alternative suggestions from different countries were proposed. The test methods are explained in detail, linked to failure descriptions and the results are compared to real failure occurrences, where possible. During a past Task 13 project phase, we recognised that the topic �3.2 Characterising and Classifying Failures of PV Modules� is an important on-going subject in the field of PV research. The current review of failure mechanisms shows that the origin and the power loss associated with some important PV module failures is not yet clear (e.g. snail tracks and cell cracks). There are also still some questions as to how best to test for some types of failure (e.g. potential induced degradation and cell cracks). Furthermore, despite the fact that a defective bypass diode or cell interconnect ribbon in a PV module may possibly lead to a fire, very little work has been done to detect these defects in an easy and reliable way once installed in a PV system. However, there are research groups currently working on those topics in order to overcome these challenges. Therefore, it is planed to continue our in-depth review of failures of photovoltaic modules in an extension of the TASK 13 project.
Citations
More filters
Journal ArticleDOI
TL;DR: The types and causes of PV systems (PVS) failures are presented, then different methods proposed in literature for FDD of PVS are reviewed and discussed; particularly faults occurring in PV arrays (PVA).
Abstract: Faults in any components (modules, connection lines, converters, inverters, etc.) of photovoltaic (PV) systems (stand-alone, grid-connected or hybrid PV systems) can seriously affect the efficiency, energy yield as well as the security and reliability of the entire PV plant, if not detected and corrected quickly. In addition, if some faults persist (e.g. arc fault, ground fault and line-to-line fault) they can lead to risk of fire. Fault detection and diagnosis (FDD) methods are indispensable for the system reliability, operation at high efficiency, and safety of the PV plant. In this paper, the types and causes of PV systems (PVS) failures are presented, then different methods proposed in literature for FDD of PVS are reviewed and discussed; particularly faults occurring in PV arrays (PVA). Special attention is paid to methods that can accurately detect, localise and classify possible faults occurring in a PVA. The advantages and limits of FDD methods in terms of feasibility, complexity, cost-effectiveness and generalisation capability for large-scale integration are highlighted. Based on the reviewed papers, challenges and recommendations for future research direction are also provided.

308 citations

Journal ArticleDOI
TL;DR: In this paper, the integration of the diverse factors that affect the performance of photovoltaic panels and how those factors affect performance of the system was introduced. But, the authors did not consider the impact of the different factors on the performance.
Abstract: The objective of this paper is to introduce the integration of the diverse factors that affect the performance of Photovoltaic panels and how those factors affect the performance of the system. Those factors include: environmental, PV system, installation, cost factors as well as other miscellaneous factors. Each of these factors is further classified into novel subcategories along with the reduction/increase effects of some factors on the system output. Solar irradiance, module temperature, dust accumulation, shading and soiling factors are some of the environmental concerns that have major effects. Panel's I-V characteristics, inverter, battery and panel efficiencies, panel material, atomic structure and band-gap energy are some of the system factors. As for the installation factors, cable characteristics, angle of inclination, mismatch effects, fixed/tracking PV mechanisms as well as MPPT are crucial to consider. Concerning the cost factors, the cables and the overall system costs are to be taken into consideration especially during payback period calculations. Other miscellaneous factors have a role in affecting the performance of the system such as degradations in the PV panel, panel resistances, performance ratio, maintenance and cleaning, sizing of the system as well as the surface area of the panel. The study results shall help both practitioners and researchers in having an inclusive overview about the several factors that can have an effect on the performance of the PV panels by removing the burden of having to search several studies under each category of factors. Moreover, researchers can build on this study by researching new ways to decrease the effect of certain factors which can further enhance the performance of the system. On the other hand, practitioners can introduce new systems that can be physically implemented in our daily lives to hinder the effect of factors negatively affecting PV panels’ performance.

228 citations

Journal ArticleDOI
TL;DR: There are several photovoltaic monitoring strategies based on the output of the plant and its nature as discussed by the authors, which can be performed locally on site or remotely. But, given the evolution of PV installations, more advanced monitoring techniques are continuously under investigation.
Abstract: As any energy production system, photovoltaic (PV) installations have to be monitored to enhance system performances and to early detect failures for more reliability. There are several photovoltaic monitoring strategies based on the output of the plant and its nature. Monitoring can be performed locally on site or remotely. It measures production, focuses also on verification and follow-up of converter and communication devices' effective operation. Up to now, some faults diagnosis methods for PV components and systems have been developed. However, given the evolution of PV installations, more advanced monitoring techniques are continuously under investigation. In this paper, major photovoltaic system failures are addressed. Then techniques for photovoltaic monitoring proposed in recent literature are overviewed and analyzed to point out their differences, advantages and limits.

216 citations

Journal ArticleDOI
TL;DR: Two automated approaches for automatic detection of defects in a single image of a PV cell are investigated, each based on an end-to-end deep Convolutional Neural Network that runs on a Graphics Processing Unit (GPU).

205 citations


Cites background from "Review of Failures of Photovoltaic ..."

  • ...Specifically, the efficiency degradation induced by finger interruptions is a complex interaction between their size, position, and the number of interruptions [6, 5]....

    [...]

  • ...[5]....

    [...]

  • ...1(b) show general material defects from the production process such as finger interruptions which do not necessarily reduce the lifespan of the affected solar panel unless caused by high strain at the solder joints [5]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a review of the photovoltaic systems, where the design, operation and maintenance are the key points of these systems, is presented. But, the authors do not focus on the operation of the PV systems.

195 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors combined thermal wave and thermography to provide a short-time low-frequency phase angle image where non-thermal features can be suppressed using lock-in data analysis.
Abstract: Thermography and thermal wave techniques can be combined to provide in a short‐time low‐frequency phase angle images where nonthermal features can be suppressed. The principle is optical thermal wave generation simultaneously on the whole sample surface and sequential monitoring of all pixels using both thermographic techniques and lock‐in data analysis. Due to parallel stationary excitation one can use low modulation frequencies allowing for a depth range that is of relevance for applications.

638 citations

Journal ArticleDOI
TL;DR: In this article, the minority carrier diffusion length distribution in polycrystalline silicon solar cells was surveyed by using a charge coupled device camera, and it was found that the intensity distribution of light emission clearly agreed with the mapping of minority carriers diffusion length.
Abstract: Photographic surveying of the minority carrier diffusion length distribution in polycrystalline silicon solar cells was proposed Light emission from the cell under the forward bias was captured by a charge coupled device camera We have found that the intensity distribution of light emission clearly agreed with the mapping of minority carrier diffusion length in polycrystalline silicon active layers The emission intensity had a one-to-one relationship with the minority carrier diffusion length, which yielded a semiquantitative analysis method of the diffusion length mapping and the detection of the deteriorated areas

488 citations

Proceedings ArticleDOI
20 Jun 2010
TL;DR: In this paper, a test setup is presented for simulation of the potential induced degradation (PID) in the lab and the influence of cell properties on PID is demonstrated in order to reveal the cell being the precondition for the PID.
Abstract: Since solar energy generation is getting more and more important worldwide PV systems and solar parks are becoming larger consisting of an increasing number of solar panels being serially interconnected. As a consequence panels are frequently exposed to high relative potentials towards ground causing High Voltage Stress (HVS). The effect of HVS on long term stability of solar panels depending on the leakage current between solar cells and ground has been first addressed by NREL in 2005 [1]. This potential degradation mechanism is not monitored by the typical PV tests listed in IEC 61215 [2]. Depending on the technology different types of Potential Induced Degradation (PID) occur. This paper is focusing on PID of wafer based standard p-type silicon technology aiming on increasing life times for solar panels once exposed to external potentials in the field. A test setup is presented for simulation of the PID in the lab and the influence of cell properties on PID is demonstrated in order to reveal the cell being the precondition for the PID. However, PID can also be stopped or minimized on panel and system level as shown in the paper.

346 citations

Journal ArticleDOI
TL;DR: In this paper, two different boron and oxygen-related recombination centers are found to be activated in crystalline silicon under illumination or electron injection in the dark, both leading to a severe degradation in the carrier lifetime.
Abstract: Two different boron- and oxygen-related recombination centers are found to be activated in crystalline silicon under illumination or electron injection in the dark, both leading to a severe degradation in the carrier lifetime. While one center forms on a time scale of seconds to minutes, the formation of the second center typically proceeds within hours. In order to reveal the electronic and microscopic properties of both defect centers as well as their formation and annihilation kinetics, we perform time-resolved lifetime measurements on silicon wafers and open-circuit voltage measurements on silicon solar cells at various temperatures. Despite the fact that the two centers are found to form independently of each other, their concentrations exhibit the same linear dependence on the substitutional boron (Bs) and quadratic dependence on the interstitial oxygen (Oi) content. Our results suggest that the fast- and the slowly forming recombination centers correspond to two different configurations of a BsO2i ...

329 citations

Journal ArticleDOI
TL;DR: In this article, a PV module reliability model based on degradation studies is presented, and the main analytical functions of reliability engineering are evaluated using this model and applied to a practical case, based on state-of-theart parameters of crystalline silicon PV technology.
Abstract: Crystalline silicon photovoltaic (PV) modules are often stated as being the most reliable element in PV systems. This presumable high reliability is reflected by their long power warranty periods. In agreement with these long warranty times, PV modules have a very low total number of returns, the exceptions usually being the result of catastrophic failures. Up to now, failures resulting from degradation are not typically taken into consideration because of the difficulties in measuring the power of an individual module in a system. However, lasting recent years PV systems are changing from small isolated systems to large grid-connected power stations. In this new scenario, customers will become more sensitive to power losses and the need for a reliability model based on degradation may become of utmost importance. In this paper, a PV module reliability model based on degradation studies is presented. The main analytical functions of reliability engineering are evaluated using this model and applied to a practical case, based on state-of-the-art parameters of crystalline silicon PV technology. Relevant and defensible power warranties and other reliability data are obtained with this model based on measured degradation rates and time-dependent power variability. In the derivation of the model some assumptions are made about the future behaviour of the products—i.e. linear degradation rates—although the approach can be used for other assumed functional profiles as well. The method documented in this paper explicitly shows manufacturers how to make reasonable and sensible warranty projections. Copyright © 2008 John Wiley & Sons, Ltd.

286 citations