scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Review of prediction for thermal contact resistance

06 Jul 2010-Science China-technological Sciences (SP Science China Press)-Vol. 53, Iss: 7, pp 1798-1808
TL;DR: Theoretical prediction of thermal contact resistance is reviewed in this paper, where the authors provide a perspective on further promising research, which would be beneficial to understand mechanisms and engineering applications of the thermal contact resistances in heat transport phenomena.
Abstract: Theoretical prediction research on thermal contact resistance is reviewed in this paper. In general, modeling or simulating the thermal contact resistance involves several aspects, including the descriptions of surface topography, the analysis of micro mechanical deformation, and the thermal models. Some key problems are proposed for accurately predicting the thermal resistance of two solid contact surfaces. We provide a perspective on further promising research, which would be beneficial to understanding mechanisms and engineering applications of the thermal contact resistance in heat transport phenomena.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the physical fundamentals, typical types and current status of polymer-based thermal interface materials (TIMs) and put emphases on the practical application requirement of TIMs, and the strategies for enhancing through-plane thermal conductivity and reducing thermal contact resistance.

72 citations

Journal ArticleDOI
TL;DR: In this article, the effect of thermal resistance between cutting tool and its supports on the temperature of a cutting tool is investigated numerically, and the governing equations are solved by COMSOL multiphysics software to obtain the unsteady temperature distribution and especially the maximum temperature.

72 citations

Journal ArticleDOI
TL;DR: In this article, the impact of the welding electrode geometry on LME cracking severity was explored and it was shown that a radius tip electrode provided minimal cracking while a truncated cone shape showed severe LME, particularly in the shoulder region.

39 citations

Journal ArticleDOI
TL;DR: In this article, a numerical model of heat conduction in vacuum through contact between two rough bodies made of commercial-purity AD1 aluminium is developed, and the elastic-plastic contact deformation problem is solved accounting strain hardening.

38 citations

Journal ArticleDOI
TL;DR: In this paper, a thermal contact resistance prediction model based on measuring actual surface topography under different loading pressures and different heating temperatures is proposed, which is implemented with software ABAQUS.

32 citations


Cites methods from "Review of prediction for thermal co..."

  • ...Generally speaking, numerical simulation of TCR involves several aspects, including the descriptions of surface topography, the analysis of micro mechanical deformation, and the heat transfer models [1]....

    [...]

References
More filters
Book
31 Dec 1959
TL;DR: In this paper, a classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems, including boundary value maximization.
Abstract: This classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems.

21,807 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new theory of elastic contact, which is more closely related to real surfaces than earlier theories, and showed how the contact deformation depends on the topography of the surface, and established the criterion for distinguishing surfaces which touch elastically from those which touch plastically.
Abstract: It is usually assumed that the real area of contact between two nominally flat metal surfaces is determined by the plastic deformation of their highest asperities. This leads at once to the result that the real area of contact is directlyproportional to the load and independent of the apparent area-a result with many applications in the theories of electric contacts and friction. Archard pointed out that plastic deformation could not be the universal rule, and introduced a model which showed that, contrary to earlier ideas, the area of contact could be proportional to the load even with purely elastic contact. This paper describes a new theory of elastic contact, which is more closely related to real surfaces than earlier theories. We show how the contact deformation depends on the topography of the surface, and establish the criterion for distinguishing surfaces which touch elastically from those which touch plastically. The theory also indicates the existence of an 'elastic contact hardness', a composite quantity depending on the elastic properties and the topography, which plays the same role in elastic contact as the conventional hardness does in plastic contact. A new instrument for measuring surface topography has been built; with it the various parameters shown by the theory to govern surface contact can be measured experimentally. The typical radii of surface asperities have been measured. They were found, surprisingly, to be orders of magnitude larger than the heights of the asperities. More generally we have been able to study the distributions of asperity heights and of other surface features for a variety of surfaces prepared by standard techniques. Using these data we find that contact between surfaces is frequently plastic, as usually assumed, but that surfaces which touch elastically are by no means uncommon in engineering practice.

5,371 citations

Journal ArticleDOI
TL;DR: In this article, the thermal boundary resistance at interfaces between helium and solids (Kapitza resistance) and thermal boundary resistances at interfaces interfaces between two solids are discussed for temperatures above 0.1 K. The apparent qualitative differences in the behavior of the boundary resistance in these two types of interfaces can be understood within the context of two limiting models of boundary resistance, the acoustic mismatch model, which assumes no scattering, and the diffuse mismatch model that all phonons incident on the interface will scatter.
Abstract: The thermal boundary resistance present at interfaces between helium and solids (Kapitza resistance) and the thermal boundary resistance at interfaces between two solids are discussed for temperatures above 0.1 K. The apparent qualitative differences in the behavior of the boundary resistance at these two types of interfaces can be understood within the context of two limiting models of the boundary resistance, the acoustic mismatch model, which assumes no scattering, and the diffuse mismatch model, which assumes that all phonons incident on the interface will scatter. If the acoustic impedances of the two media in contact are very different, as is the case for helium (liquid or solid) in contact with a solid, then phonon scattering at the interface will reduce the boundary resistance. In the limiting case of diffuse mismatch, this reduction is typically over 2 orders of magnitude. Phonons are very sensitive to surface defects, and therefore the Kapitza resistance is very sensitive to the condition of the interface. For typical solid-solid interfaces, at which the acoustic impedances are less different, the influence of diffuse scattering is relatively small; even for the two limiting cases of acoustic mismatch and diffuse mismatch the predicted boundary resistances differ by very little (\ensuremath{\lesssim} 30%). Consequently, the experimentally determined values are expected to be rather insensitive to the condition of the interface, in agreement with recent observations. Subsurface (bulk) disorder and imperfect physical contact between the solids play far more important roles and led to the irreproducibilities observed in the early measurements of the solid-solid thermal boundary resistance.

2,485 citations

Journal ArticleDOI
01 Jun 1970
TL;DR: In this article, the authors give a general theory of contact between two rough plane surfaces and show that the important results of the previous models are unaffected: in particular, the load and the area of contact remain almost proportional, independently of the detailed mechanical and geometrical properties of the asperities.
Abstract: Most models of surface contact consider the surface roughness to be on one of the contacting surfaces only. The authors give a general theory of contact between two rough plane surfaces. They show that the important results of the previous models are unaffected: in particular, the load and the area of contact remain almost proportional, independently of the detailed mechanical and geometrical properties of the asperities. Further, a single-rough-surface model can always be found which will predict the same laws as a given two-rough-surface model, although the required model may be unrealistic. It does not seem possible to deduce the asperity shape or deformation mode from the load-compliance curve.

1,435 citations

Book
01 Jan 2003
TL;DR: In this paper, the authors introduce basic concepts of heat transfer, including thermal spreading and contact resistances, and forced convection and external flow. But they do not consider the effect of external flow on internal flow.
Abstract: Preface. Contributors. 1. Basic Concepts (Allan D. Kraus). 2. Thermophysical Properties of Fluids and Materials (R. T Jacobsen, E. W. Lemmon, S. G. Penoncello, Z. Shan, and N. T. Wright). 3. Conduction Heat Transfer (A. Aziz). 4. Thermal Spreading and Contact Resistances (M. M. Yovanovich and E. E. Marotta). 5. Forced Convection: Internal Flows (Adrian Bejan). 6. Forced Convection: External Flows (Yogendra Joshi and Wataru Nakayama). 7. Natural Convection (Yogesh Jaluria). 8. Thermal Radiation (Michael F. Modest). 9. Boiling (John R. Thome). 10. Condensation (M. A. Kedzierski, J. C. Chato, and T. J. Rabas). 11. Heat Exchangers (Allan D. Kraus). 12. Experimental Methods (Jose L. Lage). 13. Heat Transfer in Electronic Equipment (Avram Bar-Cohen, Abhay A. Watwe, and Ravi S. Prasher). 14. Heat Transfer Enhancement (R. M. Manglik). 15. Porous Media (Adrian Bejan). 16. Heat Pipes (Jay M. Ochterbeck). 17. Heat Transfer in Manufacturing and Materials Processing (Richard N. Smith, C. Haris Doumanidis, and Ranga Pitchumani). 18. Microscale Heat Transfer (Andrew N. Smith and Pamela M. Norris). 19. Direct Contact Heat Transfer (Robert F. Boehm). Author Index. Subject Index. About the CD-ROM.

1,368 citations