scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes

11 Jul 2018-Journal of Electronic Packaging (American Society of Mechanical Engineers)-Vol. 140, Iss: 4, pp 040801
About: This article is published in Journal of Electronic Packaging.The article was published on 2018-07-11. It has received 74 citations till now. The article focuses on the topics: Traction (orthopedics) & Power electronics.
Citations
More filters
Journal ArticleDOI
18 Aug 2021
TL;DR: In this paper, phase change materials (PCMs) having a large latent heat during solid-liquid phase transition are promising for thermal energy storage applications, however, the relatively low thermal conductivity of the majority of promising PCMs (
Abstract: Summary Phase change materials (PCMs) having a large latent heat during solid-liquid phase transition are promising for thermal energy storage applications. However, the relatively low thermal conductivity of the majority of promising PCMs (

44 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the state-of-the-art jet impingement designs applied for power electronics cooling, as well as review future jet-impingement technology.
Abstract: Effective thermal management of power electronics in electric vehicles is essential for reliability and increased power density. Currently, traditional cooling technologies such as cold plates and heat sinks have been utilized by the automotive industry. As the next generation of power electronics implements wide-bandgap devices, however, increased heat fluxes will require more advanced cooling strategies. Recently, jet impingement has gained attention as an advanced cooling technique for power electronics due to its proven thermal performance in high-heat-flux applications. This article aims to review the state-of-the-art jet impingement designs applied for power electronics cooling, as well as review future jet impingement technology. Important factors for widespread implementation such as heat transfer, pressure drop, and reliability are discussed, along with the current technical gaps and challenges for jet impingement research in electrified transportation.

37 citations


Cites background from "Review of Thermal Packaging Technol..."

  • ...Typically, IGBT modules are cooled with horizontal flow cooling channels or cold plates [10]....

    [...]

  • ...State-of-the-art cooling methods for automotive power electronics have been reviewed extensively, with focus on high-temperature power modules [10] and traditional cooling techniques [47]; however, none have reviewed jet impingement....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors focus on chip-scale single-phase cooling for high heat flux and high temperature power device operation, which is focused on future wide band-gap semiconductors, which are expected to survive harsh environments.

30 citations

Journal ArticleDOI
TL;DR: In this article, a graphite-embedded insulated metal substrate (thermally-annealed-pyrolytic-graphite embeddings) was proposed for widebandgap power modules.
Abstract: Emerging wide-bandgap (WBG) semiconductor devices such as silicon carbide (SiC) metal–oxide semiconductor field-effect transistors (MOSFETs) and gallium nitride high-electron-mobility transistors can handle high power in reduced semiconductor areas better than conventional Si-based devices owing to superior material properties. With increased power loss density in a WBG-based converter and reduced die size in power modules, thermal management of power devices must be optimized for high performance. This article presents a graphite-embedded insulated metal substrate (thermally-annealed-pyrolytic-graphite-embedded insulated metal substrate—IMSwTPG) designed for WBG power modules. Theoretical thermal performance analysis of graphite-embedded metal cores is presented, with design details for IMSwTPG with embedded graphite to replace a direct-bonded copper (DBC) substrate. The proposed IMSwTPG is compared with an aluminum nitride-based DBC substrate using finite-element thermal analysis for steady-state and transient thermal performance. The solutions’ thermal performances are compared under different coolant temperature and thermal loading conditions, and the proposed substrate's electrical performance is validated with static and dynamic characterization. Using graphite-embedded substrates, junction-to-case thermal resistance of SiC MOSFETs can be reduced up to 17%, and device current density can be increased by 10%, regardless of the thermal management strategy used to cool the substrate. Reduced transient thermal impedance of up to 40% of dies owing to increased heat capacity is validated in transient thermal simulations and experiments. The half-bridge power module's electrical performance is evaluated for on -state resistance, switching performance, and switching loss at three junction temperature conditions. The proposed substrate solution has minimal impact on conduction and switching performance of SiC MOSFETs.

29 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a water-cooled integral heat sink for silicon integrated circuits has been designed and tested at a power density of 790 W/cm2, with a maximum substrate temperature rise of 71°C above the input water temperature.
Abstract: The problem of achieving compact, high-performance forced liquid cooling of planar integrated circuits has been investigated. The convective heat-transfer coefficient h between the substrate and the coolant was found to be the primary impediment to achieving low thermal resistance. For laminar flow in confined channels, h scales inversely with channel width, making microscopic channels desirable. The coolant viscosity determines the minimum practical channel width. The use of high-aspect ratio channels to increase surface area will, to an extent, further reduce thermal resistance. Based on these considerations, a new, very compact, water-cooled integral heat sink for silicon integrated circuits has been designed and tested. At a power density of 790 W/cm2, a maximum substrate temperature rise of 71°C above the input water temperature was measured, in good agreement with theory. By allowing such high power densities, the heat sink may greatly enhance the feasibility of ultrahigh-speed VLSI circuits.

4,214 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation is presented.
Abstract: Wide bandgap semiconductors show superior material properties enabling potential power device operation at higher temperatures, voltages, and switching speeds than current Si technology. As a result, a new generation of power devices is being developed for power converter applications in which traditional Si power devices show limited operation. The use of these new power semiconductor devices will allow both an important improvement in the performance of existing power converters and the development of new power converters, accounting for an increase in the efficiency of the electric energy transformations and a more rational use of the electric energy. At present, SiC and GaN are the more promising semiconductor materials for these new power devices as a consequence of their outstanding properties, commercial availability of starting material, and maturity of their technological processes. This paper presents a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation.

1,648 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a few graphene layer n ∼ 4, with a thickness of ∼ 2 nm, was investigated for epoxy composites and it was shown that the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %).
Abstract: Natural graphite was intercalated, thermally exfoliated, and dispersed in acetone to prepare graphite nanoplatelets (GNPs, Gn) of controlled aspect ratio. Thermal conductivity measurements indicate that few graphene layer Gn, where n ∼ 4, with a thickness of ∼2 nm function as a very efficient filler for epoxy composites. When embedded in an epoxy matrix, the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %), and a thermal conductivity κ = 6.44 W/mK, which surpasses the performance of conventional fillers that require a loading of ∼70 vol % to achieve these values. We attribute the outstanding thermal properties of this material to a favorable combination of the high aspect ratio, two-dimensional geometry, stiffness, and low thermal interface resistance of the GNPs.

981 citations

Journal ArticleDOI
TL;DR: In this article, the effects of the channel size on the flow patterns and heat transfer and pressure drop performance are reviewed in small hydraulic diameter channels, and the fundamental questions related to the presence of nucleate boiling and characteristics of flow boiling in microchannels and minichannels in comparison to that in the conventional channel sizes (3 mm and above) are addressed.

840 citations

Journal ArticleDOI
Issam Mudawar1
TL;DR: This paper explores the recent research developments in high-heat-flux thermal management and demonstrates that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme.
Abstract: This paper explores the recent research developments in high-heat-flux thermal management. Cooling schemes such as pool boiling, detachable heat sinks, channel flow boiling, microchannel and mini-channel heat sinks, jet-impingement, and sprays, are discussed and compared relative to heat dissipation potential, reliability, and packaging concerns. It is demonstrated that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme. It is also shown that extensive fundamental electronic cooling knowledge has been amassed over the past two decades. Yet there is now a growing need for hardware innovations rather than perturbations to those fundamental studies. An example of these innovations is the cooling of military avionics, where research findings from the electronic cooling literature have made possible the development of a new generation of cooling hardware which promise order of magnitude increases in heat dissipation compared to today's cutting edge avionics cooling schemes.

824 citations