scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes

11 Jul 2018-Journal of Electronic Packaging (American Society of Mechanical Engineers)-Vol. 140, Iss: 4, pp 040801
About: This article is published in Journal of Electronic Packaging.The article was published on 2018-07-11. It has received 74 citations till now. The article focuses on the topics: Traction (orthopedics) & Power electronics.
Citations
More filters
Journal ArticleDOI
TL;DR: An independent review of the state-of-the-art traction inverter designs from several production vehicles across multiple manufacturers is presented, highlighting wide bandgap devices and trends in device packaging.
Abstract: Traction inverters are crucial components of modern electrified automotive powertrains. Advances in power electronics have enabled lower cost inverters with high reliability, efficiency, and power density, suitable for mass market consumer automotive applications. This paper presents an independent review of the state-of-the-art traction inverter designs from several production vehicles across multiple manufacturers. Future trends in inverter design are identified based on industry examples and academic research. Wide bandgap devices and trends in device packaging are discussed along with active gate driver implementations, current and future trends in system integration, and advanced manufacturing techniques.

173 citations


Cites background from "Review of Thermal Packaging Technol..."

  • ...Jet impingement and spray cooling have also received significant research attention [100], along with microchannel heatsinks and heatpipes....

    [...]

Journal ArticleDOI
TL;DR: The standard power module structure is reviewed, the reasons why novel packaging technologies should be developed are described, and the packaging challenges associated with high-speed switching, thermal management, high-temperature operation, and high-voltage isolation are explained in detail.
Abstract: Power module packaging technologies have been experiencing extensive changes as the novel silicon carbide (SiC) power devices with superior performance become commercially available. This article presents an overview of power module packaging technologies in this transition, with an emphasis on the challenges that current standard packaging face, requirements that future power module packaging needs to fulfill, and recent advances on packaging technologies. The standard power module structure, which is a widely used current practice to package SiC devices, is reviewed, and the reasons why novel packaging technologies should be developed are described in this article. The packaging challenges associated with high-speed switching, thermal management, high-temperature operation, and high-voltage isolation are explained in detail. Recent advances on technologies, which try to address the limitations of standard packaging, both in packaging elements and package structure are summarized. The trend toward novel soft-switching power converters gave rise to problems regarding package designs of unconventional module configuration. Potential applications areas, such as aerospace applications, introduce low-temperature challenges to SiC packaging. Key issues in these emerging areas are highlighted.

168 citations


Cites background from "Review of Thermal Packaging Technol..."

  • ...4) Advanced cooling approaches, such as jet impingement, spray, and microchannels [31], need to be incorporated to enhance the heat removal capability....

    [...]

Journal ArticleDOI
08 Jan 2021
TL;DR: The electric drive technology trends for passenger electric and hybrid EVs with commercially available solutions in terms of materials, electric machine and inverter designs, maximum speed, component cooling, power density, and performance are discussed.
Abstract: The transition to electric road transport technologies requires electric traction drive systems to offer improved performances and capabilities, such as fuel efficiency (in terms of MPGe, i.e., miles per gallon of gasoline-equivalent), extended range, and fast-charging options. The enhanced electrification and transformed mobility are translating to a demand for higher power and more efficient electric traction drive systems that lead to better fuel economy for a given battery charge. To accelerate the mass-market adoption of electrified transportation, the U.S. Department of Energy (DOE), in collaboration with the automotive industry, has announced the technical targets for light-duty electric vehicles (EVs) for 2025. This article discusses the electric drive technology trends for passenger electric and hybrid EVs with commercially available solutions in terms of materials, electric machine and inverter designs, maximum speed, component cooling, power density, and performance. The emerging materials and technologies for power electronics and electric motors are presented, identifying the challenges and opportunities for even more aggressive designs to meet the need for next-generation EVs. Some innovative drive and motor designs with the potential to meet the DOE 2025 targets are also discussed.

164 citations


Cites background from "Review of Thermal Packaging Technol..."

  • ...The commercial SiC dies are rated up to 175 ◦C to eliminate reliability issues observed at the gate interface and body diode at elevated temperatures [23]....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a comprehensive review of the automotive power module packaging technologies and concludes that a preferable overall performance could be achieved by combining multiple technologies.
Abstract: Semiconductor power modules are core components of power electronics in electrified vehicles. Packaging technology often has a critical impact on module performance and reliability. This paper presents a comprehensive review of the automotive power module packaging technologies. The first part of this paper discusses the driving factors of packaging technology development. In the second section, the design considerations and a primary design process of module packaging are summarized. Besides, major packaging components, such as semiconductor dies, substrates, and die bonding, are introduced based on the conventional packaging structure. Next, technical details and innovative features of state-of-the-art automotive power modules from major suppliers and original equipment manufacturers are reviewed. Most of these modules have been applied in commercial vehicles. In the fourth part, the system integration concept, printed circuit board embedded packaging, three-dimensional packaging, press pack packaging, and advanced materials are categorized as promising trends for automotive applications. The advantages and drawbacks of these trends are discussed, and it is concluded that a preferable overall performance could be achieved by combining multiple technologies.

62 citations


Cites background from "Review of Thermal Packaging Technol..."

  • ...In terms of automotive applications, [5], [16], [17] introduced a few renowned power...

    [...]

  • ...the passivation layer to further insulate different conduction zones within the module, and more importantly, protect the module from the environment [16]....

    [...]

Journal ArticleDOI
TL;DR: The critical components, namely SiC power devices and modules, gate drives, and passive components, are introduced and comparatively analyzed regarding composition material, physical structure, and packaging technology, as well as MEMS devices.
Abstract: The significant advance of power electronics in today's market is calling for high-performance power conversion systems and MEMS devices that can operate reliably in harsh environments, such as high working temperature. Silicon-carbide (SiC) power electronic devices are featured by the high junction temperature, low power losses, and excellent thermal stability, and thus are attractive to converters and MEMS devices applied in a high-temperature environment. This paper conducts an overview of high-temperature power electronics, with a focus on high-temperature converters and MEMS devices. The critical components, namely SiC power devices and modules, gate drives, and passive components, are introduced and comparatively analyzed regarding composition material, physical structure, and packaging technology. Then, the research and development directions of SiC-based high-temperature converters in the fields of motor drives, rectifier units, DC-DC converters are discussed, as well as MEMS devices. Finally, the existing technical challenges facing high-temperature power electronics are identified, including gate drives, current measurement, parameters matching between each component, and packaging technology.

53 citations

References
More filters
Proceedings ArticleDOI
L. Coppola1, D. Huff1, Fred Wang1, R. Burgos1, Dushan Boroyevich1 
17 Jun 2007
TL;DR: In this paper, the authors present a selection of materials that are potentially suitable for use in high temperature package assembly, including die attach, substrate, interconnections, encapsulation, case, heat spreader and heat sink.
Abstract: High temperature SiC devices need the materials for device packages also capable of working at higher temperature than those for Si devices. This paper presents a selection of materials that are potentially suitable for use in high temperature package assembly, including die attach, substrate, interconnections, encapsulation, case, heat spreader and heat sink. The temperature under consideration is up to 250degC, corresponding to the need of many applications, including automobiles and aircraft.

138 citations

Journal ArticleDOI
TL;DR: Experimental results and theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacialthermal resistance can induce a significant degradation in thermal Conductivity for CNT/Cu composites.
Abstract: Carbon nanotube–copper (CNT/Cu) composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS) technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

135 citations

Journal Article
01 Jan 2001-Scopus
TL;DR: In this article, the failure modes of power electronics devices, especially IGBTs, are reviewed and a FEM analysis of a multilayered IGBT packaging module under cyclic thermal loading is presented.
Abstract: The development of power electronics technology is driven by the insatiate demand to control electrical power. The new power electronics devices reduce the volume of the converters by three to four orders of magnitude compared to their mercury arc predecessor. And the turn-on and turn-o0 time has decreased from milliseconds to the microseconds and even nanoseconds, depending on power level. The power range commanded by converters now extends from micro-VA to several hundreds of mega-MVA. Among the new power devices, insulated gate bipolar transistor (IGBT) devices are being more accepted and increasingly used in traction application such as locomotive, elevator, tram and subway. Thus the long-term reliability of IGBT is highly demanded. In this paper the failure modes of power electronics devices especially IGBTs are reviewed. A FEM analysis of a multilayered IGBT packaging module under cyclic thermal loading is presented.? 2001 Elsevier Science B.V. All rights reserved.

134 citations

Journal ArticleDOI
TL;DR: In this article, the authors explored the cooling performance of a new hybrid device consisting of a slot jet impinging into a micro-channel, thus capitalizing upon the merits of both cooling configurations.

122 citations