scispace - formally typeset
Journal ArticleDOI

Review on thermal energy storage with phase change materials and applications

Reads0
Chats0
TLDR
The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high energy storage density and the isothermal nature of the storage process.
Abstract
The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCMs have been widely used in latent heat thermal-storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. The uses of PCMs for heating and cooling applications for buildings have been investigated within the past decade. There are large numbers of PCMs that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also summarizes the investigation and analysis of the available thermal energy storage systems incorporating PCMs for use in different applications.

read more

Citations
More filters
Journal ArticleDOI

Advanced Materials for Energy Storage

TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Journal ArticleDOI

Overview of current development in electrical energy storage technologies and the application potential in power system operation

TL;DR: A comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system is provided in this article.
Journal ArticleDOI

A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)

TL;DR: In this paper, the phase change problem has been formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for, which makes it difficult for comparison to be made to assess the suitability of PCMs to particular applications.
Journal ArticleDOI

Review on thermal energy storage with phase change materials (PCMs) in building applications

TL;DR: In this article, the authors summarized previous works on latent thermal energy storage in building applications, covering PCMs, the impregnation methods, current building applications and their thermal performance analyses, as well as numerical simulation of buildings with PCMs.
Journal ArticleDOI

Phase change materials for thermal energy storage

TL;DR: In this article, the state of the art of phase change materials for thermal energy storage applications is reviewed and an insight into recent efforts to develop new phase change material with enhanced performance and safety.
References
More filters
Book

Numerical heat transfer and fluid flow

TL;DR: In this article, the authors focus on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms.
Book

Conduction of Heat in Solids

TL;DR: In this paper, a classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems, including boundary value maximization.
Journal ArticleDOI

Low temperature latent heat thermal energy storage: Heat storage materials

TL;DR: In this article, the melting and freezing behavior of various heat-of-fusion storage materials is investigated using the techniques of Thermal Analysis and Differential Scanning Calorimetry.
Book

Mathematical Modeling Of Melting And Freezing Processes

TL;DR: This reference book presents mathematical models of melting and solidification processes thare are key to the effective performance of latent heat thermal energy storage systems (LHTES), utilized in a wide range of heat transfer and industrial applications.
Journal ArticleDOI

Micro-encapsulated phase-change materials integrated into construction materials

TL;DR: In this article, the authors describe the work done at Fraunhofer ISE within a German government-funded project over the last 5 years, extending from building simulations to first measurements of full-size rooms equipped with PCM.
Related Papers (5)