scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ReviewNitroxide-mediated polymerization

TL;DR: In this article, a comprehensive review of NMP is presented, from its discovery to 2012, covering all aspects, features and achievements of the NMP, from synthetic approaches to nitroxides and alkoxyamines, kinetic aspects and polymerization features.
About: This article is published in Progress in Polymer Science.The article was published on 2013-01-01. It has received 1002 citations till now. The article focuses on the topics: Polymerization & Radical polymerization.
Citations
More filters
Journal ArticleDOI
TL;DR: This Perspective presents recent advances in macromolecular engineering enabled by ATRP with emphasis on various catalytic/initiation systems that use parts-per-million concentrations of Cu catalysts and can be run in environmentally friendly media, e.g., water.
Abstract: This Perspective presents recent advances in macromolecular engineering enabled by ATRP. They include the fundamental mechanistic and synthetic features of ATRP with emphasis on various catalytic/initiation systems that use parts-per-million concentrations of Cu catalysts and can be run in environmentally friendly media, e.g., water. The roles of the major components of ATRP—monomers, initiators, catalysts, and various additives—are explained, and their reactivity and structure are correlated. The effects of media and external stimuli on polymerization rates and control are presented. Some examples of precisely controlled elements of macromolecular architecture, such as chain uniformity, composition, topology, and functionality, are discussed. Syntheses of polymers with complex architecture, various hybrids, and bioconjugates are illustrated. Examples of current and forthcoming applications of ATRP are covered. Future challenges and perspectives for macromolecular engineering by ATRP are discussed.

985 citations

Journal ArticleDOI
TL;DR: The authors summarizes the features and limitations of reversible addition-fragmentation chain transfer (RAFT) polymerization, highlighting its strengths and weaknesses, as our understanding of the process from both a mechanistic and an application point of view has matured over the past 20 years.
Abstract: This Perspective summarizes the features and limitations of reversible addition–fragmentation chain transfer (RAFT) polymerization, highlighting its strengths and weaknesses, as our understanding of the process, from both a mechanistic and an application point of view, has matured over the past 20 years. It is aimed at both experts in the field and newcomers, including undergraduate and postgraduate students, as well as nonexperts in polymerization who are interested in developing their own polymeric structures by exploiting the simple setup of a RAFT polymerization.

828 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of photo-CRP reactions can be found in this article, where a large number of methods are summarized and further classified into subcategories based on the specific reagents, catalysts, etc., involved.
Abstract: The use of light to mediate controlled radical polymerization has emerged as a powerful strategy for rational polymer synthesis and advanced materials fabrication. This review provides a comprehensive survey of photocontrolled, living radical polymerizations (photo-CRPs). From the perspective of mechanism, all known photo-CRPs are divided into either (1) intramolecular photochemical processes or (2) photoredox processes. Within these mechanistic regimes, a large number of methods are summarized and further classified into subcategories based on the specific reagents, catalysts, etc., involved. To provide a clear understanding of each subcategory, reaction mechanisms are discussed. In addition, applications of photo-CRP reported so far, which include surface fabrication, particle preparation, photoresponsive gel design, and continuous flow technology, are summarized. We hope this review will not only provide informative knowledge to researchers in this field but also stimulate new ideas and applications to further advance photocontrolled reactions.

738 citations

Journal ArticleDOI
TL;DR: A metal-free ATRP process, mediated by light and catalyzed by an organic-based photoredox catalyst, is reported that resulted in block copolymer formation was facile and could be combined with other controlled radical processes leading to structural and synthetic versatility.
Abstract: Overcoming the challenge of metal contamination in traditional ATRP systems, a metal-free ATRP process, mediated by light and catalyzed by an organic-based photoredox catalyst, is reported. Polymerization of vinyl monomers are efficiently activated and deactivated with light leading to excellent control over the molecular weight, polydispersity, and chain ends of the resulting polymers. Significantly, block copolymer formation was facile and could be combined with other controlled radical processes leading to structural and synthetic versatility. We believe that these new organic-based photoredox catalysts will enable new applications for controlled radical polymerizations and also be of further value in both small molecule and polymer chemistry.

720 citations

Journal ArticleDOI
TL;DR: Advances in biomaterials for drug delivery are enabling significant progress in biology and medicine, including major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing.
Abstract: Advances in biomaterials for drug delivery are enabling significant progress in biology and medicine. Multidisciplinary collaborations between physical scientists, engineers, biologists, and clinicians generate innovative strategies and materials to treat a range of diseases. Specifically, recent advances include major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing. Here, strategies for the design and implementation of biomaterials for drug delivery are reviewed. A brief history of the biomaterials field is first established, and then commentary on RNA delivery, responsive materials development, and immunomodulation are provided. Current challenges associated with these areas as well as opportunities to address long-standing problems in biology and medicine are discussed throughout.

517 citations