scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Revision of Begomovirus taxonomy based on pairwise sequence comparisons

TL;DR: Revised guidelines for the classification and nomenclature of begomoviruses are proposed and genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomviruses belonging to different species and strains, respectively.
Abstract: Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.
Citations
More filters
Journal ArticleDOI
TL;DR: The geminiviruses are a family of small, non-enveloped viruses with single-stranded, circular DNA genomes of 2500–5200 bases causing economically important diseases in most tropical and subtropical regions of the world.
Abstract: The geminiviruses are a family of small, non-enveloped viruses with single-stranded, circular DNA genomes of 2500–5200 bases. Geminiviruses are transmitted by various types of insect (whiteflies, leafhoppers, treehoppers and aphids). Members of the genus Begomovirus are transmitted by whiteflies, those in the genera Becurtovirus, Curtovirus, Grablovirus, Mastrevirus and Turncurtovirus are transmitted by specific leafhoppers, the single member of the genus Topocuvirus is transmitted by a treehopper and one member of the genus Capulavirus is transmitted by an aphid. Geminiviruses are plant pathogens causing economically important diseases in most tropical and subtropical regions of the world. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Geminiviridae which is available at www.ictv.global/report/geminiviridae.

492 citations


Cites background from "Revision of Begomovirus taxonomy ba..."

  • ...Begomoviruses infect dicots and are transmitted by whiteflies [5]....

    [...]

Journal ArticleDOI
TL;DR: Details are provided on an updated Circoviridae taxonomy ratified by the International Committee on the Taxonomy of Viruses in 2016, which establishes the genus Cyclovirus and reassigns the genus Gyrovirus to the family Anelloviraceae, a separate lineage of animal viruses that also contains circular ssDNA genomes.
Abstract: The family Circoviridae contains viruses with covalently closed, circular, single-stranded DNA (ssDNA) genomes, including the smallest known autonomously replicating, capsid-encoding animal pathogens. Members of this family are known to cause fatal diseases in birds and pigs and have been historically classified in one of two genera: Circovirus, which contains avian and porcine pathogens, and Gyrovirus, which includes a single species (Chicken anemia virus). However, over the course of the past six years, viral metagenomic approaches as well as degenerate PCR detection in unconventional hosts and environmental samples have elucidated a broader host range, including fish, a diversity of mammals, and invertebrates, for members of the family Circoviridae. Notably, these methods have uncovered a distinct group of viruses that are closely related to members of the genus Circovirus and comprise a new genus, Cyclovirus. The discovery of new viruses and a re-evaluation of genomic features that characterize members of the Circoviridae prompted a revision of the classification criteria used for this family of animal viruses. Here we provide details on an updated Circoviridae taxonomy ratified by the International Committee on the Taxonomy of Viruses in 2016, which establishes the genus Cyclovirus and reassigns the genus Gyrovirus to the family Anelloviridae, a separate lineage of animal viruses that also contains circular ssDNA genomes. In addition, we provide a new species demarcation threshold of 80% genome-wide pairwise identity for members of the family Circoviridae, based on pairwise identity distribution analysis, and list guidelines to distinguish between members of this family and other eukaryotic viruses with circular, ssDNA genomes.

255 citations

Journal ArticleDOI
TL;DR: Two new genera are established: Capulavirus, with four new species (Alfalfa leaf curl virus, Euphorbia caput-medusae latent virus, French bean severe Leaf curl virus and Plantago lanceolata latent virus), and Grablov virus, with one newspecies (Grapevine red blotch virus).
Abstract: Geminiviruses are plant-infecting single-stranded DNA viruses that occur in most parts of the world. Currently, there are seven genera within the family Geminiviridae (Becurtovirus, Begomovirus, Curtovirus, Eragrovirus, Mastrevirus, Topocuvirus and Turncurtovirus). The rate of discovery of new geminiviruses has increased significantly over the last decade as a result of new molecular tools and approaches (rolling-circle amplification and deep sequencing) that allow for high-throughput workflows. Here, we report the establishment of two new genera: Capulavirus, with four new species (Alfalfa leaf curl virus, Euphorbia caput-medusae latent virus, French bean severe leaf curl virus and Plantago lanceolata latent virus), and Grablovirus, with one new species (Grapevine red blotch virus). The aphid species Aphis craccivora has been shown to be a vector for Alfalfa leaf curl virus, and the treehopper species Spissistilus festinus is the likely vector of Grapevine red blotch virus. In addition, two highly divergent groups of viruses found infecting citrus and mulberry plants have been assigned to the new species Citrus chlorotic dwarf associated virus and Mulberry mosaic dwarf associated virus, respectively. These species have been left unassigned to a genus by the ICTV because their particle morphology and insect vectors are unknown.

189 citations


Cites background from "Revision of Begomovirus taxonomy ba..."

  • ...The criteria include host range, insect vector, genome organisation and genome-wide pairwise sequence identities [1, 11, 12, 26, 38, 39]....

    [...]

Journal ArticleDOI
TL;DR: The main findings from recent studies of CRISPR/Cas9-mediated viral interference are described and discussed and how these findings can be applied to improve global agriculture.
Abstract: Plant viruses infect many economically important crops, including wheat, cotton, maize, cassava, and other vegetables. These viruses pose a serious threat to agriculture worldwide, as decreases in cropland area per capita may cause production to fall short of that required to feed the increasing world population. Under these circumstances, conventional strategies can fail to control rapidly evolving and emerging plant viruses. Genome-engineering strategies have recently emerged as promising tools to introduce desirable traits in many eukaryotic species, including plants. Among these genome engineering technologies, the CRISPR (clustered regularly interspaced palindromic repeats)/ CRISPR-associated 9 (CRISPR/Cas9) system has received special interest because of its simplicity, efficiency, and reproducibility. Recent studies have used CRISPR/Cas9 to engineer virus resistance in plants, either by directly targeting and cleaving the viral genome, or by modifying the host plant genome to introduce viral immunity. Here, we briefly describe the biology of the CRISPR/Cas9 system and plant viruses, and how different genome engineering technologies have been used to target these viruses. We further describe the main findings from recent studies of CRISPR/Cas9-mediated viral interference and discuss how these findings can be applied to improve global agriculture. We conclude by pinpointing the gaps in our knowledge and the outstanding questions regarding CRISPR/Cas9-mediated viral immunity.

135 citations


Cites background from "Revision of Begomovirus taxonomy ba..."

  • ...Based upon their host ranges, insect vectors and genome organizations, geminiviruses are classified into seven genera: Begomovirus, Curtovirus, Topocuvirus, Mastrevirus, Becurtovirus, Turncurtovirus, and Eragrovirus (Varsani et al., 2014; Brown et al., 2015)....

    [...]

Book ChapterDOI
TL;DR: The explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade is surveyed, similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences are highlighted, and the ecology and evolution of eUKaryoticCRESS DNA viruses are discussed.
Abstract: While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.

125 citations

References
More filters
Journal ArticleDOI
TL;DR: The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models, inferring ancestral states and sequences, and estimating evolutionary rates site-by-site.
Abstract: Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net.

39,110 citations


"Revision of Begomovirus taxonomy ba..." refers methods in this paper

  • ...2 [16] with the GTR?I?G nucleotide (nt) substitution model and branch support being tested with 3,000 bootstrap iterations....

    [...]

Journal ArticleDOI
TL;DR: MUSCLE offers a range of options that provide improved speed and / or alignment accuracy compared with currently available programs, and a new option, MUSCLE-fast, designed for high-throughput applications.
Abstract: In a previous paper, we introduced MUSCLE, a new program for creating multiple alignments of protein sequences, giving a brief summary of the algorithm and showing MUSCLE to achieve the highest scores reported to date on four alignment accuracy benchmarks. Here we present a more complete discussion of the algorithm, describing several previously unpublished techniques that improve biological accuracy and / or computational complexity. We introduce a new option, MUSCLE-fast, designed for high-throughput applications. We also describe a new protocol for evaluating objective functions that align two profiles. We compare the speed and accuracy of MUSCLE with CLUSTALW, Progressive POA and the MAFFT script FFTNS1, the fastest previously published program known to the author. Accuracy is measured using four benchmarks: BAliBASE, PREFAB, SABmark and SMART. We test three variants that offer highest accuracy (MUSCLE with default settings), highest speed (MUSCLE-fast), and a carefully chosen compromise between the two (MUSCLE-prog). We find MUSCLE-fast to be the fastest algorithm on all test sets, achieving average alignment accuracy similar to CLUSTALW in times that are typically two to three orders of magnitude less. MUSCLE-fast is able to align 1,000 sequences of average length 282 in 21 seconds on a current desktop computer. MUSCLE offers a range of options that provide improved speed and / or alignment accuracy compared with currently available programs. MUSCLE is freely available at http://www.drive5.com/muscle .

7,617 citations

Journal ArticleDOI
TL;DR: There is now sufficient evidence to state that B. tabaci is not made up of biotypes and that the use of biotype in this context is erroneous and misleading.
Abstract: Bemisia tabaci has long been considered a complex species. It rose to global prominence in the 1980s owing to the global invasion by the commonly named B biotype. Since then, the concomitant eruption of a group of plant viruses known as begomoviruses has created considerable management problems in many countries. However, an enduring set of questions remains: Is B. tabaci a complex species or a species complex, what are Bemisia biotypes, and how did all the genetic variability arise? This review considers these issues and concludes that there is now sufficient evidence to state that B. tabaci is not made up of biotypes and that the use of biotype in this context is erroneous and misleading. Instead, B. tabaci is a complex of 11 well-defined high-level groups containing at least 24 morphologically indistinguishable species.

1,295 citations