scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Revisiting the problem of a crack impinging on an interface: A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model

TL;DR: In this article, a novel formulation combining the phase field approach for modeling brittle fracture in the bulk and a cohesive zone model for pre-existing adhesive interfaces is proposed to investigate the competition between crack penetration and deflection at an interface.
About: This article is published in Computer Methods in Applied Mechanics and Engineering.The article was published on 2017-07-01 and is currently open access. It has received 178 citations till now. The article focuses on the topics: Cohesive zone model & Fracture mechanics.
Citations
More filters
03 Oct 2012
TL;DR: A variational free-discontinuity formulation of brittle fracture was given by Francfort and Marigo as discussed by the authors, where the total energy is minimized with respect to the crackgeometry and the displacement field simultaneously.
Abstract: A variational free-discontinuity formulation of brittle fracture was given by Francfortand Marigo [1], where the total energy is minimized with respect to the crackgeometry and the displacement field simultaneously. The entire evolution of cracksincluding their initiation and branching is determined by this minimization principlerequiring no further criterion. However, a direct numerical discretization of themodel faces considerable difficulties as the displacement field is discontinuous inthe presence of cracks.

313 citations

Journal ArticleDOI
TL;DR: In this article, a phase-field regularized cohesive zone model (CZM) with linear softening law is applied to brittle fracture. But the model is not suitable for the case of nonlinear singularities (e.g., corners, notches, etc.).
Abstract: Being able to model complex nucleation, propagation, branching and merging of cracks in solids within a unified framework, the classical phase-field models for brittle fracture fail in predicting length scale independent global responses for a solid lacking elastic singularities (e.g., corners, notches, etc.). Motivated from Barenblatt’s approximation of Griffith’s brittle fracture with a vanishing Irwin’s internal length, this paper extends our recent work in quasi-brittle failure (Wu, 2017, 2018a) and presents for the first time a length scale insensitive phase-field damage model for brittle fracture. More specifically, with a set of optimal characteristic functions, a phase-field regularized cohesive zone model (CZM) with linear softening law is addressed and applied to brittle fracture. Both the failure strength and the traction – separation law are independent of the incorporated length scale parameter. Compared to other phase-field models and CZM based discontinuous approaches for brittle fracture, the proposed phase-field regularized CZM is of several merits. On the one hand, being theoretically equivalent to Barenblatt’s CZM (at least in the 1-D case), it needs neither the explicit crack representation/tracking nor the elastic penalty stiffness which both are necessary but cumbersome for discontinuous approaches. On the other hand, it gives length scale independent global responses for problems with or without elastic singularities while preserving the expected Γ -convergence property of phase-field models. Representative numerical examples of several well-known benchmark tests support the above conclusions, validating its capability of modeling both mode-I and mixed-mode brittle fracture.

305 citations

Book ChapterDOI
01 Jan 2020
TL;DR: This chapter provides an extensive overview of the literature on the so-called phase-field fracture/damage models (PFMs), particularly, for quasi-static and dynamic fracture of brittle and quasi-brittle materials, from the points of view of a computational mechanician.
Abstract: Fracture is one of the most commonly encountered failure modes of engineering materials and structures. Prevention of cracking-induced failure is, therefore, a major concern in structural designs. Computational modeling of fracture constitutes an indispensable tool not only to predict the failure of cracking structures but also to shed insights into understanding the fracture processes of many materials such as concrete, rock, ceramic, metals, and biological soft tissues. This chapter provides an extensive overview of the literature on the so-called phase-field fracture/damage models (PFMs), particularly, for quasi-static and dynamic fracture of brittle and quasi-brittle materials, from the points of view of a computational mechanician. PFMs are the regularized versions of the variational approach to fracture which generalizes Griffith's theory for brittle fracture. They can handle topologically complex fractures such as initiation, intersecting, and branching cracks in both two and three dimensions with a quite straightforward implementation. One of our aims is to justify the gaining popularity of PFMs. To this end, both theoretical and computational aspects are discussed and extensive benchmark problems (for quasi-static and dynamic brittle/cohesive fracture) that are successfully and unsuccessfully solved with PFMs are presented. Unresolved issues for further investigations are also documented.

290 citations

Journal ArticleDOI
TL;DR: In this article, a simple 2D and 3D crack evolution algorithm is proposed to avoid variable/DOF mapping within mesh adaptation algorithms, which avoids the variable mapping by using a modified screened Poisson equation.

167 citations

Journal ArticleDOI
TL;DR: In this article, an extension of the phase-field cohesive zone model for static fracture to dynamic fracture in brittle and quasi-brittle solids is presented, and the model performance is tested with several benchmarks for dynamic brittle and cohesive fracture.

150 citations

References
More filters
Book
01 Jan 1989
TL;DR: In this article, the methodes are numeriques and the fonction de forme reference record created on 2005-11-18, modified on 2016-08-08.
Abstract: Keywords: methodes : numeriques ; fonction de forme Reference Record created on 2005-11-18, modified on 2016-08-08

17,327 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Abstract: In the course of an investigation of the effect of surface scratches on the mechanical strength of solids, some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion. The original object of the work, which was carried out at the Royal Aircraft Estab­lishment, was the discovery of the effect of surface treatment—such as, for instance, filing, grinding or polishing—on the strength of metallic machine parts subjected to alternating or repeated loads. In the case of steel, and some other metals in common use, the results of fatigue tests indicated that the range of alternating stress which could be permanently sustained by the material was smaller than the range within which it was sensibly elastic, after being subjected to a great number of reversals. Hence it was inferred that the safe range of loading of a part, having a scratched or grooved surface of a given type, should be capable of estimation with the help of one of the two hypotheses of rupture commonly used for solids which are elastic to fracture. According to these hypotheses rupture may be expected if (a) the maximum tensile stress, ( b ) the maximum extension, exceeds a certain critical value. Moreover, as the behaviour of the materials under consideration, within the safe range of alternating stress, shows very little departure from Hooke’s law, it was thought that the necessary stress and strain calculations could be performed by means of the mathematical theory of elasticity.

10,162 citations


"Revisiting the problem of a crack i..." refers background in this paper

  • ...The foundations of phase field approaches for brittle fracture can be traced back to the classical energy-based Griffith criterion [44] through the introduction of a total energy functional that is the sum of the fracture and elastic energy contributions....

    [...]

Journal ArticleDOI
TL;DR: In this article, a displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method.
Abstract: SUMMARY An improvement of a new technique for modelling cracks in the nite element framework is presented. A standard displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright ? 1999 John Wiley & Sons, Ltd.

5,815 citations

Journal ArticleDOI
TL;DR: In this article, an element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems, where moving least-squares interpolants are used to construct the trial and test functions for the variational principle.
Abstract: An element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems. In this method, moving least-squares interpolants are used to construct the trial and test functions for the variational principle (weak form); the dependent variable and its gradient are continuous in the entire domain. In contrast to an earlier formulation by Nayroles and coworkers, certain key differences are introduced in the implementation to increase its accuracy. The numerical examples in this paper show that with these modifications, the method does not exhibit any volumetric locking, the rate of convergence can exceed that of finite elements significantly and a high resolution of localized steep gradients can be achieved. The moving least-squares interpolants and the choices of the weight function are also discussed in this paper.

5,324 citations

Journal ArticleDOI
Ted Belytschko1, Y. Krongauz1, D. Organ1, Mark Fleming1, Petr Krysl1 
TL;DR: Meshless approximations based on moving least-squares, kernels, and partitions of unity are examined and it is shown that the three methods are in most cases identical except for the important fact that partitions ofunity enable p-adaptivity to be achieved.

3,082 citations


"Revisiting the problem of a crack i..." refers methods in this paper

  • ...Alternative numerical procedures to the previous FE-based approaches based on meshfree techniques have been extensively developed in the last decades [65,66]....

    [...]