scispace - formally typeset
Search or ask a question
Book

Rfid Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification

23 May 2003-
TL;DR: In this paper, the authors provide a standard reference for people working with RFID technology, including electron data carrier architecture and common algorithms for anticollision, and a detailed appendix providing up-to-date information on relevant ISO standards and regulations, including descriptions of ISO 14443 for contactless ticketing and ISO 15693 covering the smartlabel.
Abstract: RFID (Radio Frequency Identification) is used in all areas of automatic data capture allowing contactless identification of objects using RF. With applications ranging from secure internet payment systems to industrial automation and access control, RFID technology solutions are receiving much attention in the research and development departments of large corporations. RFID is a major growth are in auto ID, allowing emergency vehicles to safely trip traffic signals, and providing the technology behind contactless smart cards, "autopiloting" cars, and production automation. Fully revised and updated to include all the latest information on industry standards and applications, this new edition provides a standard reference for people working with RFID technology.Expanded sections explain exactly how RFID systems work, and provide up-to-date information on the development of new tags such as the smart label. This book provides updated coverage of RFID technologies, including electron data carrier architecture and common algorithms for anticollision. It details the latest RFID applications, such as the smartlabel, e-commerce and the electronic purse, document tracking and e-ticketing. It includes a detailed appendix providing up-to-date information on relevant ISO standards and regulations, including descriptions of ISO 14443 for contactless ticketing and ISO 15693 covering the smartlabel.A leading-edge reference for this rapidly evolving technology, this text is of interest to practitioners in auto ID and IT designing RFID products and end-users of RFID technology, computer and electronics engineers in security system development and microchip designers, automation, industrial and transport engineers and materials handling specialists. It is also a valuable resource for graduate level students in electronics and industrial engineering design.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents the key features and the driver technologies of IoT, and identifies the application scenarios and the correspondent potential applications, and focuses on research challenges and open issues to be faced for the IoT realization in the real world.
Abstract: The Internet of Things (IoT) is a new paradigm that combines aspects and technologies coming from different approaches. Ubiquitous computing, pervasive computing, Internet Protocol, sensing technologies, communication technologies, and embedded devices are merged together in order to form a system where the real and digital worlds meet and are continuously in symbiotic interaction. The smart object is the building block of the IoT vision. By putting intelligence into everyday objects, they are turned into smart objects able not only to collect information from the environment and interact/control the physical world, but also to be interconnected, to each other, through Internet to exchange data and information. The expected huge number of interconnected devices and the significant amount of available data open new opportunities to create services that will bring tangible benefits to the society, environment, economy and individual citizens. In this paper we present the key features and the driver technologies of IoT. In addition to identifying the application scenarios and the correspondent potential applications, we focus on research challenges and open issues to be faced for the IoT realization in the real world.

1,178 citations


Cites background from "Rfid Handbook: Fundamentals and App..."

  • ...A fundamental role is covered by the RFID technology [37, 38]....

    [...]

Journal ArticleDOI
TL;DR: This paper compares security issues between IoT and traditional network, and discusses opening security issues of IoT, and analyzes the cross-layer heterogeneous integration issues and security issues in detail and discusses the security issues as a whole.
Abstract: Internet of Things (IoT) is playing a more and more important role after its showing up, it covers from traditional equipment to general household objects such as WSNs and RFID. With the great potential of IoT, there come all kinds of challenges. This paper focuses on the security problems among all other challenges. As IoT is built on the basis of the Internet, security problems of the Internet will also show up in IoT. And as IoT contains three layers: perception layer, transportation layer and application layer, this paper will analyze the security problems of each layer separately and try to find new problems and solutions. This paper also analyzes the cross-layer heterogeneous integration issues and security issues in detail and discusses the security issues of IoT as a whole and tries to find solutions to them. In the end, this paper compares security issues between IoT and traditional network, and discusses opening security issues of IoT.

1,060 citations


Cites background from "Rfid Handbook: Fundamentals and App..."

  • ...RFID conflict collision can be divided into two categories: tags’ collision and readers’ collision [32]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the magnetic resonance coupling between source and load coils is achieved with lumped capacitors terminating the coils, and a circuit model is developed to describe the system with a single receiver and extended to describe two receivers.
Abstract: Wireless power transfer via magnetic resonant coupling is experimentally demonstrated in a system with a large source coil and either one or two small receivers. Resonance between source and load coils is achieved with lumped capacitors terminating the coils. A circuit model is developed to describe the system with a single receiver, and extended to describe the system with two receivers. With parameter values chosen to obtain good fits, the circuit models yield transfer frequency responses that are in good agreement with experimental measurements over a range of frequencies that span the resonance. Resonant frequency splitting is observed experimentally and described theoretically for the multiple receiver system. In the single receiver system at resonance, more than 50% of the power that is supplied by the actual source is delivered to the load. In a multiple receiver system, a means for tracking frequency shifts and continuously retuning the lumped capacitances that terminate each receiver coil so as to maximize efficiency is a key issue for future work.

888 citations

Patent
19 Jan 2005
TL;DR: In this paper, a data tag attached to packaging for user privacy or tamper-evident reasons is deactivated for wireless signal transmission at a first range such that removal of the data tag substantially prevents communication of the identified information via the removed data tag and permits communication of identification information via another data tag at a second range relatively smaller than the first range.
Abstract: Deactivating a data tag attached to packaging for user privacy or tamper-evident reasons. Each of a plurality of data tags stores identification information. At least one of the data tags is removable and capable of wireless signal transmission at a first range such that removal of the data tag substantially prevents communication of the identification information via the removed data tag and permits communication of the identification information via another data tag at a second range relatively smaller than the first range.

874 citations

Journal ArticleDOI
TL;DR: An RF-DC power conversion system is designed to efficiently convert far-field RF energy to DC voltages at very low received power and voltages and is ideal for use in passively powered sensor networks.
Abstract: An RF-DC power conversion system is designed to efficiently convert far-field RF energy to DC voltages at very low received power and voltages. Passive rectifier circuits are designed in a 0.25 mum CMOS technology using floating gate transistors as rectifying diodes. The 36-stage rectifier can rectify input voltages as low as 50 mV with a voltage gain of 6.4 and operates with received power as low as 5.5 muW(22.6 dBm). Optimized for far field, the circuit operates at a distance of 44 m from a 4 W EIRP source. The high voltage range achieved at low load current make it ideal for use in passively powered sensor networks.

766 citations


Cites background from "Rfid Handbook: Fundamentals and App..."

  • ...Devices powered by propagating RF waves are most often used in passive radio frequency identification (RFID) or passive RF tags to replace the bar code as a new form of data collection [2], [7]....

    [...]

  • ...One of the most popular power extraction methods for passively powered devices is to harvest power from propagating radio frequency (RF) signals [2]....

    [...]