scispace - formally typeset
Search or ask a question
Journal ArticleDOI

*-Ricci soliton on (κ, μ)′-almost Kenmotsu manifolds

31 Jul 2019-Open Mathematics (De Gruyter)-Vol. 17, Iss: 1, pp 874-882
TL;DR: In this article, it was shown that if the metric g of M is a *-Ricci soliton, then either M is locally isometric to the product ℍn+1(−4)×ℝn or the potential vector field is strict infinitesimal contact transformation.
Abstract: Abstract Let (M, g) be a non-Kenmotsu (κ, μ)′-almost Kenmotsu manifold of dimension 2n + 1. In this paper, we prove that if the metric g of M is a *-Ricci soliton, then either M is locally isometric to the product ℍn+1(−4)×ℝn or the potential vector field is strict infinitesimal contact transformation. Moreover, two concrete examples of (κ, μ)′-almost Kenmotsu 3-manifolds admitting a Killing vector field and strict infinitesimal contact transformation are given.
Citations
More filters
Book
01 Jan 1970

329 citations

Journal ArticleDOI
TL;DR: In this article, the Ricci soliton is shown to be Ricci flat and locally isometric with respect to the Euclidean distance of the potential vector field when the manifold satisfies gradient almost.
Abstract: In the present paper, we initiate the study of $$*$$ - $$\eta $$ -Ricci soliton within the framework of Kenmotsu manifolds as a characterization of Einstein metrics. Here we display that a Kenmotsu metric as a $$*$$ - $$\eta $$ -Ricci soliton is Einstein metric if the soliton vector field is contact. Further, we have developed the characterization of the Kenmotsu manifold or the nature of the potential vector field when the manifold satisfies gradient almost $$*$$ - $$\eta $$ -Ricci soliton. Next, we deliberate $$*$$ - $$\eta $$ -Ricci soliton admitting $$(\kappa ,\mu )^\prime $$ -almost Kenmotsu manifold and proved that the manifold is Ricci flat and is locally isometric to $${\mathbb {H}}^{n+1}(-4)\times {\mathbb {R}}^n$$ . Finally we present some examples to decorate the existence of $$*$$ - $$\eta $$ -Ricci soliton, gradient almost $$*$$ - $$\eta $$ -Ricci soliton on Kenmotsu manifold.

8 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that if the metric g represents a Yamabe soliton, then it is locally isometric to the product space and the contact transformation is a strict infinitesimal contact transformation.
Abstract: Let $$(M^{2n+1},\phi ,\xi ,\eta ,g)$$ be a non-Kenmotsu almost Kenmotsu $$(k,\mu )'$$ -manifold. If the metric g represents a Yamabe soliton, then either $$M^{2n+1}$$ is locally isometric to the product space $$\mathbb {H}^{n+1}(-4)\times \mathbb {R}^n$$ or $$\eta $$ is a strict infinitesimal contact transformation. The later case can not occur if a Yamabe soliton is replaced by a gradient Yamabe soliton. Some corollaries of this theorem are given and an example illustrating this theorem is constructed.

6 citations

Journal ArticleDOI
TL;DR: In this paper, the authors prove a non-existence result for Ricci solitons on non-cosymplectic manifolds, and prove the same result for almost cosympelous manifolds.
Abstract: In this short note, we prove a non-existence result for $$*$$ -Ricci solitons on non-cosymplectic $$(\kappa ,\mu )$$ -almost cosymplectic manifolds.

6 citations

Journal ArticleDOI
15 Apr 2021
TL;DR: In this article, it was shown that Bach flat almost coKahler manifold admits Ricci solitons, satisfying the critical point equation (CPE) or Bach flat.
Abstract: In this paper, we study an almost coKahler manifold admitting certain metrics such as $$*$$ -Ricci solitons, satisfying the critical point equation (CPE) or Bach flat. First, we consider a coKahler 3-manifold (M, g) admitting a $$*$$ -Ricci soliton (g, X) and we show in this case that either M is locally flat or X is an infinitesimal contact transformation. Next, we study non-coKahler $$(\kappa ,\mu )$$ -almost coKahler metrics as CPE metrics and prove that such a g cannot be a solution of CPE with non-trivial function f. Finally, we prove that a $$(\kappa , \mu )$$ -almost coKahler manifold (M, g) is coKahler if either M admits a divergence free Cotton tensor or the metric g is Bach flat. In contrast to this, we show by a suitable example that there are Bach flat almost coKahler manifolds which are non-coKahler.

6 citations

References
More filters
Book
08 Jan 2002
TL;DR: In this article, the authors describe a complex geometry model of Symplectic Manifolds with principal S1-bundles and Tangent Sphere Bundles, as well as a negative Xi-sectional Curvature.
Abstract: Preface * 1. Symplectic Manifolds * 2. Principal S1-bundles * 3. Contact Manifolds * 4. Associated Metrics * 5. Integral Submanifolds and Contact Transformations * 6. Sasakian and Cosymplectic Manifolds * 7. Curvature of Contact Metric Manifolds * 8. Submanifolds of Kahler and Sasakian Manifolds * 9. Tangent Bundles and Tangent Sphere Bundles * 10. Curvature Functionals and Spaces of Associated Metrics * 11. Negative Xi-sectional Curvature * 12. Complex Contact Manifolds * 13. Additional Topics in Complex Geometry * 14. 3-Sasakian Manifolds * Bibliography * Subject Index * Author Index

1,822 citations

Journal ArticleDOI
TL;DR: In this article, Tanno has classified connected almost contact Riemannian manifolds whose automorphism groups have themaximum dimension into three classes: (1) homogeneous normal contact manifolds with constant 0-holomorphic sec-tional curvature if the sectional curvature for 2-planes which contain
Abstract: Recently S. Tanno has classified connected almostcontact Riemannian manifolds whose automorphism groups have themaximum dimension [9]. In his classification table the almost contactRiemannian manifolds are divided into three classes: (1) homogeneousnormal contact Riemannian manifolds with constant 0-holomorphic sec-tional curvature if the sectional curvature for 2-planes which contain

614 citations

Book
01 Jan 1970

329 citations