scispace - formally typeset
Search or ask a question
Journal ArticleDOI

*-Ricci solitons of real hypersurfaces in non-flat complex space forms

TL;DR: In this paper, the notion of *-Ricci soliton is introduced and real hypersurfaces in non-flat complex space forms admitting a *-ricci s soliton with potential vector field being the structure vector field.
About: This article is published in Journal of Geometry and Physics.The article was published on 2014-12-01 and is currently open access. It has received 53 citations till now. The article focuses on the topics: Ricci flow & Ricci curvature.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that if a complete Sasakian metric is an almost gradient ∗-Ricci soliton, then it is either positive or null-Sakian.
Abstract: We prove that if a Sasakian metric is a ∗-Ricci Soliton, then it is either positive Sasakian, or null-Sasakian. Next, we prove that if a complete Sasakian metric is an almost gradient ∗-Ricci Solit...

37 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied ∗-η-Ricci soliton on Sasakian manifolds and obtained some significant curvature properties on the manifold admitting the soliton.
Abstract: In this paper we study ∗-η-Ricci soliton on Sasakian manifolds. Here, we have discussed some curvature properties on Sasakian manifold admitting ∗-η-Ricci soliton. We have obtained some significant...

25 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that if the metric g of M is a *-Ricci soliton, then either M is locally isometric to the product ℍn+1(−4)×ℝn or the potential vector field is strict infinitesimal contact transformation.
Abstract: Abstract Let (M, g) be a non-Kenmotsu (κ, μ)′-almost Kenmotsu manifold of dimension 2n + 1. In this paper, we prove that if the metric g of M is a *-Ricci soliton, then either M is locally isometric to the product ℍn+1(−4)×ℝn or the potential vector field is strict infinitesimal contact transformation. Moreover, two concrete examples of (κ, μ)′-almost Kenmotsu 3-manifolds admitting a Killing vector field and strict infinitesimal contact transformation are given.

24 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the Ricci soliton of a 3-dimensional Kenmotsu manifold is locally isometric to the hyperbolic 3-space and the potential vector field coincides with the Reeb vector field.
Abstract: Let $(M,\phi,\xi,\eta,g)$ be a three-dimensional Kenmotsu manifold. In this paper, we prove that the triple $(g,V,\lambda)$ on $M$ is a $*$-Ricci soliton if and only if $M$ is locally isometric to the hyperbolic 3-space $\mathbf{H}^3(-1)$ and $\lambda=0$. Moreover, if $g$ is a gradient $*$-Ricci soliton, then the potential vector field coincides with the Reeb vector field. We also show that the metric of a coKahler 3-manifold is a $*$-Ricci soliton if and only if it is a Ricci soliton.

20 citations

Journal ArticleDOI
01 Nov 2019
TL;DR: In this article, it was shown that if the Ricci tensor of a manifold is a Ricci soliton on a manifold M, then M is either a homothetic to an Einstein manifold or vanishes.
Abstract: In this paper we study a special type of metric called $$*$$ -Ricci soliton on para-Sasakian manifold. We prove that if the para-Sasakian metric is a $$*$$ -Ricci soliton on a manifold M, then M is either $$\mathcal {D}$$ -homothetic to an Einstein manifold, or the Ricci tensor of M with respect to the canonical paracontact connection vanishes.

14 citations


Cites methods from "*-Ricci solitons of real hypersurfa..."

  • ...Panagiotidou [14] initiated the notion of ∗-Ricci soliton where they essentially modified the definition of Ricci soliton by replacing the Ricci tensor Ric in (1....

    [...]

References
More filters
01 Jan 1988

563 citations

Book ChapterDOI
25 May 2004

392 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the problem of determining homogeneous real hypersurfaces in a complex projective space Pn(C) of complex dimension n(^>2) which are orbits under analytic subgroups of the projective unitary group PU(n-\\-\\)>.
Abstract: The purpose of this paper is to determine those homogeneous real hypersurfaces in a complex projective space Pn(C) of complex dimension n(^>2) which are orbits under analytic subgroups of the projective unitary group PU(n-\\-\\)> and to give some characterizations of those hypersurfaces. In § 1 from each effective Hermitian orthogonal symmetric Lie algebra of rank two we construct an example of homogeneous real hypersurface in Pn(C)y which we shall call a model space in Pn(C). In §2 we show that the class of all homogeneous real hypersurfaces in Pn{C) that are orbits under analytic subgroups of PU(n-\\-l) is exhausted by all model spaces. In §§3 and 4 we give some conditions for a real hypersurface in Pn(C) to be an orbit under an analytic subgroup of PU(n-\\-l) and in the course of proof we obtain a rigidity theorem in Pn(C) analogous to one for hypersurfaces in a real space form. The author would like to express his hearty thanks to Professor T. Takahashi for valuable discussions with him and his constant encouragement, and to Professor M. Takeuchi who made an original complicated proof of Lemma 2.3 short and clear.

316 citations

Journal ArticleDOI
TL;DR: In this paper, the location of the focal points of a real submanifold is defined in terms of its second fundamental form, and the rank of a focal map onto a sheet of focal points corresponding to a principal curvature is computed using the Codazzi equation.
Abstract: Let M be a real submanifold of CPm, and let J denote the complex structure. We begin by finding a formula for the location of the focal points of M in terms of its second fundamental form. This takes a particularly tractable form when M is a complex submanifold or a real hypersurface on which Ji is a principal vector for each unit normal ( to M. The rank of the focal map onto a sheet of the focal set of M is also computed in terms of the second fundamental form. In the case of a real hypersurface on which JE is principal with corresponding principal curvature ,u, if the map onto a sheet of the focal set corresponding to ,u has constant rank, then that sheet is a complex submanifold over which M is a tube of constant radius (Theorem 1). The other sheets of the focal set of such a hypersurface are given a real manifold structure in Theorem 2. These results are then employed as major tools in obtaining two classifications of real hypersurfaces in cPm. First, there are no totally umbilic real hypersurfaces in cPm, but we show: THEOREM 3. Let M be a connected real hypersurface in CPm, m > 3, with at most two distinct principal curvatures at each point. Then M is an open subset of a geodesic hypersphere. Secondly, we show that there are no Einstein real hypersurfaces in cPm and characterize the geodesic hyperspheres and two other classes of hypersurfaces in terms of a slightly less stringent requirement on the Ricci tensor in Theorem 4. One of the first results in the geometry of submanifolds is that an umbilic hypersurface M in Euclidean space must be an open subset of a hyperplane or sphere. The proof goes as follows: assume that the shape operator is a scalar multiple of the identity, A = AX, and use the Codazzi equation to show that X is constant. Then either X = 0, in which case M lies on a hyperplane, or the focal points fx(x) = x + (l/X)t, ( the unit normal, all coincide, and M lies on the sphere of radius 1 /X centered at the unique focal point. This simple idea suggests a plan of attack for classifying hypersurfaces in terms of the nature of the principal curvatures. Under fairly general conditions, the set of focal points corresponding to a principal curvature X can be given a differentiable Received by the editors December 19, 1980. Presented to the Society at its annual meeting in San Francisco, January 10, 1981. 1980 Mathematics Subject Classificatiom Primary 53B25, 53C40.

296 citations

Journal ArticleDOI
TL;DR: In this article, the second fundamental tensor of a real hypersurface of a complex projective space (CPn) is compared with the corresponding hypersurfaces of a Riemannian manifold of constant curvature.
Abstract: A principal circle bundle over a real hypersurface of a complex projective space CPn can be regarded as a hypersurface of an odddimensional sphere. From this standpoint we can establish a method to translate conditions imposed on a hypersurface of CPn into those imposed on a hypersurface of S2'+1. Some fundamental relations between the second fundamental tensor of a hypersurface of CPn and that of a hypersurface of S2n+1 are given. Introduction. As is well known a sphere S2n+1 of dimension 2n + 1 is a principal circle bundle over a complex projective space CPn and the Riemannian structure on CPn is given by the submersion ir: S2n+ 1 ~ CPn [4], [7]. This suggests that fundamental properties of a submersion would be applied to the study of real submanifolds of a complex projective space. In fact, H. B. Lawson [2] has made one step in this direction. His idea is to construct a principal circle bundle M2n over a real hypersurface M2n-1 of Cpn in such a way that M2n is a hypersurface of S2n + 1 and then to compare the length of the second fundamental tensors of M2n-1 and M2 n. Thus we can apply theorems on hypersurfaces of S2n+1. In this paper, using Lawson's method, we prove a theorem which characterizes some remarkable classes of real hypersurfaces of Cpn. First of all, in ?1, we state a lemma for a hypersurface of a Riemannian manifold of constant curvature for the later use. In ?2, we recall fundamental formulas of a submersion which are obtained in [4], [7] and those established between the second fundamental tensors of M and M. In ?3, we give some identities which are valid in a real hypersurface of CPn. After these preparations, we show, in ?4, a geometric meaning of the commutativity of the second fundamental tensor of M in Cp'n and a fundamental tensor of the submersion ir: M . M 1. Hypersurfaces of a Riemannian manifold of constant curvature. Let M be an (m + 1)-dimensional Riemannian manifold with a Riemannian metric G and i: M M be an isometric immersion of an m-dimensional differentiable Received by the editors March 25, 1974 and, in revised form, September 9, 1974. AMS (MOS) subject classifications (1970). Primary 53C40, 53C20.

282 citations