scispace - formally typeset
Search or ask a question
Proceedings SeriesDOI

Right to be Forgotten in Light Of Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons With Regard to the Processing of Personal Data and on the Free Movement of Such Data and Repealing Directive 95/46/EC

About: The article was published on 2019-04-20. It has received 1369 citations till now. The article focuses on the topics: General Data Protection Regulation & Right to be forgotten.
Citations
More filters
Journal ArticleDOI
TL;DR: This work introduces a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federatedLearning, and federated transfer learning, and provides a comprehensive survey of existing works on this subject.
Abstract: Today’s artificial intelligence still faces two major challenges. One is that, in most industries, data exists in the form of isolated islands. The other is the strengthening of data privacy and security. We propose a possible solution to these challenges: secure federated learning. Beyond the federated-learning framework first proposed by Google in 2016, we introduce a comprehensive secure federated-learning framework, which includes horizontal federated learning, vertical federated learning, and federated transfer learning. We provide definitions, architectures, and applications for the federated-learning framework, and provide a comprehensive survey of existing works on this subject. In addition, we propose building data networks among organizations based on federated mechanisms as an effective solution to allowing knowledge to be shared without compromising user privacy.

2,593 citations

Journal ArticleDOI
TL;DR: This work reviews the recent status of methodologies and techniques related to the construction of digital twins mostly from a modeling perspective to provide a detailed coverage of the current challenges and enabling technologies along with recommendations and reflections for various stakeholders.
Abstract: Digital twin can be defined as a virtual representation of a physical asset enabled through data and simulators for real-time prediction, optimization, monitoring, controlling, and improved decision making. Recent advances in computational pipelines, multiphysics solvers, artificial intelligence, big data cybernetics, data processing and management tools bring the promise of digital twins and their impact on society closer to reality. Digital twinning is now an important and emerging trend in many applications. Also referred to as a computational megamodel, device shadow, mirrored system, avatar or a synchronized virtual prototype, there can be no doubt that a digital twin plays a transformative role not only in how we design and operate cyber-physical intelligent systems, but also in how we advance the modularity of multi-disciplinary systems to tackle fundamental barriers not addressed by the current, evolutionary modeling practices. In this work, we review the recent status of methodologies and techniques related to the construction of digital twins mostly from a modeling perspective. Our aim is to provide a detailed coverage of the current challenges and enabling technologies along with recommendations and reflections for various stakeholders.

660 citations

Journal ArticleDOI
TL;DR: In this article, the authors apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games, and propose a semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines.
Abstract: Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly intelligent behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner. Nonlinear machine learning methods have good predictive ability but the lack of transparency of the algorithms can limit their use. Here the authors investigate how these methods approach learning in order to assess the dependability of their decision making.

394 citations

Journal ArticleDOI
TL;DR: This work introduces a new technique and framework, known as federated transfer learning (FTL), to improve statistical modeling under a data federation, which allows knowledge to be shared without compromising user privacy and enables complementaryknowledge to be transferred across domains in a data Federation.
Abstract: Machine learning relies on the availability of vast amounts of data for training. However, in reality, data are mostly scattered across different organizations and cannot be easily integrated due to many legal and practical constraints. To address this important challenge in the field of machine learning, we introduce a new technique and framework, known as federated transfer learning (FTL), to improve statistical modeling under a data federation. FTL allows knowledge to be shared without compromising user privacy and enables complementary knowledge to be transferred across domains in a data federation, thereby enabling a target-domain party to build flexible and effective models by leveraging rich labels from a source domain. This framework requires minimal modifications to the existing model structure and provides the same level of accuracy as the nonprivacy-preserving transfer learning. It is flexible and can be effectively adapted to various secure multiparty machine learning tasks.

338 citations

Journal ArticleDOI
TL;DR: This study reviews FL and explores the main evolution path for issues exist in FL development process to advance the understanding of FL, and identifies six research fronts to address FL literature and help advance theUnderstanding of FL for future optimization.

316 citations

Related Papers (5)