scispace - formally typeset
Journal ArticleDOI

RING Domain E3 Ubiquitin Ligases

Reads0
Chats0
TLDR
RING E3s have been linked to the control of many cellular processes and to multiple human diseases, and knowledge of the physiological partners, biological functions, substrates, and mechanism of action for most RING E 3s remains at a rudimentary stage.
Abstract
E3 ligases confer specificity to ubiquitination by recognizing target substrates and mediating transfer of ubiquitin from an E2 ubiquitinconjugating enzyme to substrate. The activity of most E3s is specified by a RING domain, which binds to an E2∼ubiquitin thioester and activates discharge of its ubiquitin cargo. E2-E3 complexes can either monoubiquitinate a substrate lysine or synthesize polyubiquitin chains assembled via different lysine residues of ubiquitin. These modifications can have diverse effects on the substrate, ranging from proteasome-dependent proteolysis to modulation of protein function, structure, assembly, and/or localization. Not surprisingly, RING E3mediated ubiquitination can be regulated in a number of ways. RING-based E3s are specified by over 600 human genes, surpassing the 518 protein kinase genes. Accordingly, RING E3s have been linked to the control of many cellular processes and to multiple human diseases. Despite their critical importance, our knowledge of the physiological partners, biological functions, substrates, and mechanism of action for most RING E3s remains at a rudimentary stage.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The Ubiquitin Code

TL;DR: The structure, assembly, and function of the posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells.
Journal ArticleDOI

Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells

TL;DR: Using quantitative proteomics, it is found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKzF3, by the CRBN-CRL4 ubiquitin ligase, which are essential transcription factors in multiple myeloma.
Journal ArticleDOI

MDM2, MDMX and p53 in oncogenesis and cancer therapy.

TL;DR: This Review highlights the progress made and pitfalls encountered as the field continues to search for MDM-targeted antitumour agents.
Journal ArticleDOI

The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition.

TL;DR: A better understanding of SUMO regulatory mechanisms will lead to improved approaches for analysing the function ofsumO and substrate conjugation in distinct cellular pathways.
References
More filters
Journal ArticleDOI

Targeting of HIF-alpha to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation

TL;DR: It is shown that the interaction between human pVHL and a specific domain of the HIF-1α subunit is regulated through hydroxylation of a proline residue by an enzyme the authors have termed Hif-α prolyl-hydroxylase (HIF-PH).
Journal ArticleDOI

HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing

TL;DR: It is found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated, which may play a key role in mammalian oxygen sensing.
Journal ArticleDOI

Mechanisms underlying ubiquitination.

TL;DR: Recent findings reveal that all known E3s utilize one of just two catalytic domains--a HECT domain or a RING finger--and crystal structures have provided the first detailed views of an active site of each type.
Journal ArticleDOI

Function and regulation of cullin-RING ubiquitin ligases.

TL;DR: This review focuses on the composition, regulation and function of cullin–RING ligases, and describes how these enzymes can be characterized by a set of general principles.
Journal ArticleDOI

Recognition of the polyubiquitin proteolytic signal.

TL;DR: The properties of the substrates studied here implicate substrate unfolding as a kinetically dominant step in the proteolysis of properly folded proteins, and suggest that extraproteasomal chaperones are required for efficient degradation of certain proteasome substrates.
Related Papers (5)