scispace - formally typeset
Open AccessBook

Risk Analysis: A Quantitative Guide

David Vose
Reads0
Chats0
TLDR
In this article, the authors present a risk analysis approach based on Monte-Carlo simulation, which is used to fit a first-order parametric distribution to observed data and then combine it with a second-order probability distribution.
Abstract
Preface. Part 1: Introduction. 1. Why do a risk analysis? 1.1. Moving on from "What If" Scenarios. 1.2. The Risk Analysis Process. 1.3. Risk Management Options. 1.4. Evaluating Risk Management Options. 1.5. Inefficiencies in Transferring Risks to Others. 1.6. Risk Registers. 2. Planning a risk analysis. 2.1. Questions and Motives. 2.2. Determine the Assumptions that are Acceptable or Required. 2.3. Time and Timing. 2.4. You'll Need a Good Risk Analyst or Team. 3. The quality of a risk analysis. 3.1. The Reasons Why a Risk Analysis can be Terrible. 3.2. Communicating the Quality of Data Used in a Risk Analysis. 3.3. Level of Criticality. 3.4. The Biggest Uncertainty in a Risk Analysis. 3.5. Iterate. 4. Choice of model structure. 4.1. Software Tools and the Models they Build. 4.2. Calculation Methods. 4.3. Uncertainty and Variability. 4.4. How Monte Carlo Simulation Works. 4.5. Simulation Modelling. 5. Understanding and using the results of a risk analysis. 5.1. Writing a Risk Analysis Report. 5.2. Explaining a Model's Assumptions. 5.3. Graphical Presentation of a Model's Results. 5.4. Statistical Methods of Analysing Results. Part 2: Introduction. 6. Probability mathematics and simulation. 6.1. Probability Distribution Equations. 6.2. The Definition of "Probability". 6.3. Probability Rules. 6.4. Statistical Measures. 7. Building and running a model. 7.1. Model Design and Scope. 7.2. Building Models that are Easy to Check and Modify. 7.3. Building Models that are Efficient. 7.4. Most Common Modelling Errors. 8. Some basic random processes. 8.1. Introduction. 8.2. The Binomial Process. 8.3. The Poisson Process. 8.4. The Hypergeometric Process. 8.5. Central Limit Theorem. 8.6. Renewal Processes. 8.7. Mixture Distributions. 8.8. Martingales. 8.9. Miscellaneous Example. 9. Data and statistics. 9.1. Classical Statistics. 9.2. Bayesian Inference. 9.3. The Bootstrap. 9.4. Maximum Entropy Principle. 9.5. Which Technique Should You Use? 9.6. Adding uncertainty in Simple Linear Least-Squares Regression Analysis. 10. Fitting distributions to data. 10.1. Analysing the Properties of the Observed Data. 10.2. Fitting a Non-Parametric Distribution to the Observed Data. 10.3. Fitting a First-Order Parametric Distribution to Observed Data. 10.4. Fitting a Second-Order Parametric Distribution to Observed Data. 11. Sums of random variables. 11.1. The Basic Problem. 11.2. Aggregate Distributions. 12. Forecasting with uncertainty. 12.1. The Properties of a Time Series Forecast. 12.2. Common Financial Time Series Models. 12.3. Autoregressive Models. 12.4. Markov Chain Models. 12.5. Birth and Death Models. 12.6. Time Series Projection of Events Occurring Randomly in Time. 12.7. Time Series Models with Leading Indicators. 12.8. Comparing Forecasting Fits for Different Models. 12.9. Long-Term Forecasting. 13. Modelling correlation and dependencies. 13.1. Introduction. 13.2. Rank Order Correlation. 13.3. Copulas. 13.4. The Envelope Method. 13.5. Multiple Correlation Using a Look-Up Table. 14. Eliciting from expert opinion. 14.1. Introduction. 14.2. Sources of Error in Subjective Estimation. 14.3. Modelling Techniques. 14.4. Calibrating Subject Matter Experts. 14.5. Conducting a Brainstorming Session. 14.6. Conducting the Interview. 15. Testing and modelling causal relationships. 15.1. Campylobacter Example. 15.2. Types of Model to Analyse Data. 15.3. From Risk Factors to Causes. 15.4. Evaluating Evidence. 15.5. The Limits of Causal Arguments. 15.6. An Example of a Qualitative Causal Analysis. 15.7. Is Causal Analysis Essential? 16. Optimisation in risk analysis. 16.1. Introduction. 16.2. Optimisation Methods. 16.3. Risk Analysis Modelling and Optimisation. 16.4. Working Example: Optimal Allocation of Mineral Pots. 17. Checking and validating a model. 17.1. Spreadsheet Model Errors. 17.2. Checking Model Behaviour. 17.3. Comparing Predictions Against Reality. 18. Discounted cashflow modelling. 18.1. Useful Time Series Models of Sales and Market Size. 18.2. Summing Random Variables. 18.3. Summing Variable Margins on Variable Revenues. 18.4. Financial Measures in Risk Analysis. 19. Project risk analysis. 19.1. Cost Risk Analysis. 19.2. Schedule Risk Analysis. 19.3. Portfolios of risks. 19.4. Cascading Risks. 20. Insurance and finance risk analysis modelling. 20.1. Operational Risk Modelling. 20.2. Credit Risk. 20.3. Credit Ratings and Markov Chain Models. 20.4. Other Areas of Financial Risk. 20.5. Measures of Risk. 20.6. Term Life Insurance. 20.7. Accident Insurance. 20.8. Modelling a Correlated Insurance Portfolio. 20.9. Modelling Extremes. 20.10. Premium Calculations. 21. Microbial food safety risk assessment. 21.1. Growth and Attenuation Models. 21.2. Dose-Response Models. 21.3. Is Monte Carlo Simulation the Right Approach? 21.4. Some Model Simplifications. 22. Animal import risk assessment. 22.1. Testing for an Infected Animal. 22.2. Estimating True Prevalence in a Population. 22.3. Importing Problems. 22.4. Confidence of Detecting an Infected Group. 22.5. Miscellaneous Animal Health and Food Safety Problems. I. Guide for lecturers. II. About ModelRisk. III. A compendium of distributions. III.1. Discrete and Continuous Distributions. III.2. Bounded and Unbounded Distributions. III.3. Parametric and Non-Parametric Distributions. III.4. Univariate and Multivariate Distributions. III.5. Lists of Applications and the Most Useful Distributions. III.6. How to Read Probability Distribution Equations. III.7. The Distributions. III.8. Introduction to Creating Your Own Distributions. III.9. Approximation of One Distribution with Another. III.10. Recursive Formulae for Discrete Distributions. III.11. A Visual Observation On The Behaviour Of Distributions. IV. Further reading. V. Vose Consulting. References. Index.

read more

Citations
More filters
Journal ArticleDOI

Foodborne Illness Acquired in the United States—Major Pathogens

TL;DR: Each year, 31 pathogens caused 9.4 million episodes of foodborne illness, resulting in 55,961 hospitalizations and 1,351 deaths in the United States.
BookDOI

Global burden of disease and risk factors

TL;DR: Global Burden of Disease and Risk Factors examines the comparative importance of diseases, injuries, and risk factors; it incorporates a range of new data sources to develop consistent estimates of incidence, prevalence, severity and duration, and mortality for 136 major diseases and injuries.
Journal ArticleDOI

The global burden of nontyphoidal Salmonella gastroenteritis.

TL;DR: To estimate the global burden of nontyphoidal Salmonella gastroenteritis, existing data from laboratory-based surveillance and special studies were synthesized, with a hierarchical preference to prospective population-based studies, "multiplier studies," disease notifications, returning traveler data, and extrapolation.
Book

Individual-based modeling and ecology

TL;DR: An excellent introduction and overview of this field, written by Volker Grimm and Steven F. Railsback, should be read by everyone interested in individual-based modeling and especially by anyone contemplating developing, or being involved with a group developing, an individualbased model.
Journal ArticleDOI

Foodborne Illness Acquired in the United States

TL;DR: The strength of the correlation between norovirus outbreaks and survey results suggests that the population survey is sensitive to norov virus activity and that Norovirus may account for much of what is considered to be unspecified.
References
More filters
Book

Genetic algorithms in search, optimization, and machine learning

TL;DR: In this article, the authors present the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields, including computer programming and mathematics.
Journal ArticleDOI

A new look at the statistical model identification

TL;DR: In this article, a new estimate minimum information theoretical criterion estimate (MAICE) is introduced for the purpose of statistical identification, which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure.

Estimating the dimension of a model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.
Journal ArticleDOI

Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation

Robert F. Engle
- 01 Jul 1982 - 
TL;DR: In this article, a new class of stochastic processes called autoregressive conditional heteroscedastic (ARCH) processes are introduced, which are mean zero, serially uncorrelated processes with nonconstant variances conditional on the past, but constant unconditional variances.
MonographDOI

Causality: models, reasoning, and inference

TL;DR: The art and science of cause and effect have been studied in the social sciences for a long time as mentioned in this paper, see, e.g., the theory of inferred causation, causal diagrams and the identification of causal effects.