scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China

TL;DR: Although high fever was associated with the development of ARDS, it was also associated with better outcomes among patients with ARDS and treatment with methylprednisolone may be beneficial for patients who develop ARDS.
Abstract: Importance Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that was first reported in Wuhan, China, and has subsequently spread worldwide. Risk factors for the clinical outcomes of COVID-19 pneumonia have not yet been well delineated. Objective To describe the clinical characteristics and outcomes in patients with COVID-19 pneumonia who developed acute respiratory distress syndrome (ARDS) or died. Design, Setting, and Participants Retrospective cohort study of 201 patients with confirmed COVID-19 pneumonia admitted to Wuhan Jinyintan Hospital in China between December 25, 2019, and January 26, 2020. The final date of follow-up was February 13, 2020. Exposures Confirmed COVID-19 pneumonia. Main Outcomes and Measures The development of ARDS and death. Epidemiological, demographic, clinical, laboratory, management, treatment, and outcome data were also collected and analyzed. Results Of 201 patients, the median age was 51 years (interquartile range, 43-60 years), and 128 (63.7%) patients were men. Eighty-four patients (41.8%) developed ARDS, and of those 84 patients, 44 (52.4%) died. In those who developed ARDS, compared with those who did not, more patients presented with dyspnea (50 of 84 [59.5%] patients and 30 of 117 [25.6%] patients, respectively [difference, 33.9%; 95% CI, 19.7%-48.1%]) and had comorbidities such as hypertension (23 of 84 [27.4%] patients and 16 of 117 [13.7%] patients, respectively [difference, 13.7%; 95% CI, 1.3%-26.1%]) and diabetes (16 of 84 [19.0%] patients and 6 of 117 [5.1%] patients, respectively [difference, 13.9%; 95% CI, 3.6%-24.2%]). In bivariate Cox regression analysis, risk factors associated with the development of ARDS and progression from ARDS to death included older age (hazard ratio [HR], 3.26; 95% CI 2.08-5.11; and HR, 6.17; 95% CI, 3.26-11.67, respectively), neutrophilia (HR, 1.14; 95% CI, 1.09-1.19; and HR, 1.08; 95% CI, 1.01-1.17, respectively), and organ and coagulation dysfunction (eg, higher lactate dehydrogenase [HR, 1.61; 95% CI, 1.44-1.79; and HR, 1.30; 95% CI, 1.11-1.52, respectively] and D-dimer [HR, 1.03; 95% CI, 1.01-1.04; and HR, 1.02; 95% CI, 1.01-1.04, respectively]). High fever (≥39 °C) was associated with higher likelihood of ARDS development (HR, 1.77; 95% CI, 1.11-2.84) and lower likelihood of death (HR, 0.41; 95% CI, 0.21-0.82). Among patients with ARDS, treatment with methylprednisolone decreased the risk of death (HR, 0.38; 95% CI, 0.20-0.72). Conclusions and Relevance Older age was associated with greater risk of development of ARDS and death likely owing to less rigorous immune response. Although high fever was associated with the development of ARDS, it was also associated with better outcomes among patients with ARDS. Moreover, treatment with methylprednisolone may be beneficial for patients who develop ARDS.
Citations
More filters
Journal ArticleDOI
25 Aug 2020-JAMA
TL;DR: This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19, the novel severe acute respiratory syndrome coronavirus 2 pandemic that has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease.
Abstract: Importance The coronavirus disease 2019 (COVID-19) pandemic, due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease. This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19. Observations SARS-CoV-2 is spread primarily via respiratory droplets during close face-to-face contact. Infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. The average time from exposure to symptom onset is 5 days, and 97.5% of people who develop symptoms do so within 11.5 days. The most common symptoms are fever, dry cough, and shortness of breath. Radiographic and laboratory abnormalities, such as lymphopenia and elevated lactate dehydrogenase, are common, but nonspecific. Diagnosis is made by detection of SARS-CoV-2 via reverse transcription polymerase chain reaction testing, although false-negative test results may occur in up to 20% to 67% of patients; however, this is dependent on the quality and timing of testing. Manifestations of COVID-19 include asymptomatic carriers and fulminant disease characterized by sepsis and acute respiratory failure. Approximately 5% of patients with COVID-19, and 20% of those hospitalized, experience severe symptoms necessitating intensive care. More than 75% of patients hospitalized with COVID-19 require supplemental oxygen. Treatment for individuals with COVID-19 includes best practices for supportive management of acute hypoxic respiratory failure. Emerging data indicate that dexamethasone therapy reduces 28-day mortality in patients requiring supplemental oxygen compared with usual care (21.6% vs 24.6%; age-adjusted rate ratio, 0.83 [95% CI, 0.74-0.92]) and that remdesivir improves time to recovery (hospital discharge or no supplemental oxygen requirement) from 15 to 11 days. In a randomized trial of 103 patients with COVID-19, convalescent plasma did not shorten time to recovery. Ongoing trials are testing antiviral therapies, immune modulators, and anticoagulants. The case-fatality rate for COVID-19 varies markedly by age, ranging from 0.3 deaths per 1000 cases among patients aged 5 to 17 years to 304.9 deaths per 1000 cases among patients aged 85 years or older in the US. Among patients hospitalized in the intensive care unit, the case fatality is up to 40%. At least 120 SARS-CoV-2 vaccines are under development. Until an effective vaccine is available, the primary methods to reduce spread are face masks, social distancing, and contact tracing. Monoclonal antibodies and hyperimmune globulin may provide additional preventive strategies. Conclusions and Relevance As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. Many aspects of transmission, infection, and treatment remain unclear. Advances in prevention and effective management of COVID-19 will require basic and clinical investigation and public health and clinical interventions.

3,371 citations

Journal ArticleDOI
TL;DR: The basic virology of SARS-CoV-2 is described, including genomic characteristics and receptor use, highlighting its key difference from previously known coronaviruses.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused a pandemic of acute respiratory disease, named ‘coronavirus disease 2019’ (COVID-19), which threatens human health and public safety. In this Review, we describe the basic virology of SARS-CoV-2, including genomic characteristics and receptor use, highlighting its key difference from previously known coronaviruses. We summarize current knowledge of clinical, epidemiological and pathological features of COVID-19, as well as recent progress in animal models and antiviral treatment approaches for SARS-CoV-2 infection. We also discuss the potential wildlife hosts and zoonotic origin of this emerging virus in detail. In this Review, Shi and colleagues summarize the exceptional amount of research that has characterized acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) since this virus has swept around the globe. They discuss what we know so far about the emergence and virology of SARS-CoV-2 and the pathogenesis and treatment of COVID-19.

2,904 citations

Journal ArticleDOI
TL;DR: In this cohort of patients hospitalized for severe Covid-19 who were treated with compassionate-use remdesivir, clinical improvement was observed in 36 of 53 patients, and Measurement of efficacy will require ongoing randomized, placebo-controlled trials of remdesavir therapy.
Abstract: Background Remdesivir, a nucleotide analogue prodrug that inhibits viral RNA polymerases, has shown in vitro activity against SARS-CoV-2. Methods We provided remdesivir on a compassionate-...

2,314 citations

Journal ArticleDOI
TL;DR: The current understanding of the pathogenesis, epidemiology, management and outcomes of patients with COVID-19 who develop venous or arterial thrombosis, and of those with preexistingThrombotic disease who develop CO VID-19 are reviewed.

2,222 citations


Cites background from "Risk Factors Associated With Acute ..."

  • ...Disease severity is variably associated with prolongation of the prothrombin tim e (PT) and international normalized ratio (INR) (1,20,26), and thrombin time (TT) (27), and v ariably by a trend toward shortened activated partial thromboplastin time (aPTT) (1,16,19,28)....

    [...]

  • ...Although older age and comorbidities such as cardiovascular disease confer a higher risk for severe disease, young and otherwise healthy patients are also at risk for com plications (19)....

    [...]

Journal ArticleDOI
13 Jul 2020-Science
TL;DR: The results of this trio of studies suggest that the location, timing, and duration of IFN exposure are critical parameters underlying the success or failure of therapeutics for viral respiratory infections.
Abstract: Coronavirus disease 2019 (COVID-19) is characterized by distinct patterns of disease progression suggesting diverse host immune responses. We performed an integrated immune analysis on a cohort of 50 COVID-19 patients with various disease severity. A unique phenotype was observed in severe and critical patients, consisting of a highly impaired interferon (IFN) type I response (characterized by no IFN-β and low IFN-α production and activity), associated with a persistent blood viral load and an exacerbated inflammatory response. Inflammation was partially driven by the transcriptional factor NF-κB and characterized by increased tumor necrosis factor (TNF)-α and interleukin (IL)-6 production and signaling. These data suggest that type-I IFN deficiency in the blood could be a hallmark of severe COVID-19 and provide a rationale for combined therapeutic approaches.

2,171 citations

References
More filters
Journal ArticleDOI
TL;DR: The epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of patients with laboratory-confirmed 2019-nCoV infection in Wuhan, China, were reported.

36,578 citations

Journal ArticleDOI
TL;DR: Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily, which is the seventh member of the family of coronaviruses that infect humans.
Abstract: In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).

21,455 citations

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

16,857 citations

Journal ArticleDOI
17 Mar 2020-JAMA
TL;DR: The epidemiological and clinical characteristics of novel coronavirus (2019-nCoV)-infected pneumonia in Wuhan, China, and hospital-associated transmission as the presumed mechanism of infection for affected health professionals and hospitalized patients are described.
Abstract: Importance In December 2019, novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited. Objective To describe the epidemiological and clinical characteristics of NCIP. Design, Setting, and Participants Retrospective, single-center case series of the 138 consecutive hospitalized patients with confirmed NCIP at Zhongnan Hospital of Wuhan University in Wuhan, China, from January 1 to January 28, 2020; final date of follow-up was February 3, 2020. Exposures Documented NCIP. Main Outcomes and Measures Epidemiological, demographic, clinical, laboratory, radiological, and treatment data were collected and analyzed. Outcomes of critically ill patients and noncritically ill patients were compared. Presumed hospital-related transmission was suspected if a cluster of health professionals or hospitalized patients in the same wards became infected and a possible source of infection could be tracked. Results Of 138 hospitalized patients with NCIP, the median age was 56 years (interquartile range, 42-68; range, 22-92 years) and 75 (54.3%) were men. Hospital-associated transmission was suspected as the presumed mechanism of infection for affected health professionals (40 [29%]) and hospitalized patients (17 [12.3%]). Common symptoms included fever (136 [98.6%]), fatigue (96 [69.6%]), and dry cough (82 [59.4%]). Lymphopenia (lymphocyte count, 0.8 × 109/L [interquartile range {IQR}, 0.6-1.1]) occurred in 97 patients (70.3%), prolonged prothrombin time (13.0 seconds [IQR, 12.3-13.7]) in 80 patients (58%), and elevated lactate dehydrogenase (261 U/L [IQR, 182-403]) in 55 patients (39.9%). Chest computed tomographic scans showed bilateral patchy shadows or ground glass opacity in the lungs of all patients. Most patients received antiviral therapy (oseltamivir, 124 [89.9%]), and many received antibacterial therapy (moxifloxacin, 89 [64.4%]; ceftriaxone, 34 [24.6%]; azithromycin, 25 [18.1%]) and glucocorticoid therapy (62 [44.9%]). Thirty-six patients (26.1%) were transferred to the intensive care unit (ICU) because of complications, including acute respiratory distress syndrome (22 [61.1%]), arrhythmia (16 [44.4%]), and shock (11 [30.6%]). The median time from first symptom to dyspnea was 5.0 days, to hospital admission was 7.0 days, and to ARDS was 8.0 days. Patients treated in the ICU (n = 36), compared with patients not treated in the ICU (n = 102), were older (median age, 66 years vs 51 years), were more likely to have underlying comorbidities (26 [72.2%] vs 38 [37.3%]), and were more likely to have dyspnea (23 [63.9%] vs 20 [19.6%]), and anorexia (24 [66.7%] vs 31 [30.4%]). Of the 36 cases in the ICU, 4 (11.1%) received high-flow oxygen therapy, 15 (41.7%) received noninvasive ventilation, and 17 (47.2%) received invasive ventilation (4 were switched to extracorporeal membrane oxygenation). As of February 3, 47 patients (34.1%) were discharged and 6 died (overall mortality, 4.3%), but the remaining patients are still hospitalized. Among those discharged alive (n = 47), the median hospital stay was 10 days (IQR, 7.0-14.0). Conclusions and Relevance In this single-center case series of 138 hospitalized patients with confirmed NCIP in Wuhan, China, presumed hospital-related transmission of 2019-nCoV was suspected in 41% of patients, 26% of patients received ICU care, and mortality was 4.3%.

16,635 citations

Journal ArticleDOI
TL;DR: Characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia, and further investigation is needed to explore the applicability of the Mu LBSTA scores in predicting the risk of mortality in 2019-nCoV infection.

16,282 citations

Related Papers (5)