scispace - formally typeset
Search or ask a question
Journal ArticleDOI

RNA-Seq: a revolutionary tool for transcriptomics

01 Jan 2009-Nature Reviews Genetics (Nature Publishing Group)-Vol. 10, Iss: 1, pp 57-63
TL;DR: The RNA-Seq approach to transcriptome profiling that uses deep-sequencing technologies provides a far more precise measurement of levels of transcripts and their isoforms than other methods.
Abstract: RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: These findings uncover a novel mechanism controlling the growth of cancer cells at specific modulation frequencies without affecting normal tissues, which may have broad implications in oncology.
Abstract: BACKGROUND: There is clinical evidence that very low and safe levels of amplitude-modulated electromagnetic fields administered via an intrabuccal spoon-shaped probe may elicit therapeutic responses in patients with cancer. However, there is no known mechanism explaining the anti-proliferative effect of very low intensity electromagnetic fields. METHODS: To understand the mechanism of this novel approach, hepatocellular carcinoma (HCC) cells were exposed to 27.12MHz radiofrequency electromagnetic fields using in vitro exposure systems designed to replicate in vivo conditions. Cancer cells were exposed to tumour-specific modulation frequencies, previously identified by biofeedback methods in patients with a diagnosis of cancer. Control modulation frequencies consisted of randomly chosen modulation frequencies within the same 100Hz–21kHz range as cancer-specific frequencies. RESULTS: The growth of HCC and breast cancer cells was significantly decreased by HCC-specific and breast cancer-specific modulation frequencies, respectively. However, the same frequencies did not affect proliferation of nonmalignant hepatocytes or breast epithelial cells. Inhibition of HCC cell proliferation was associated with downregulation of XCL2 and PLP2. Furthermore, HCC-specific modulation frequencies disrupted the mitotic spindle. CONCLUSION: These findings uncover a novel mechanism controlling the growth of cancer cells at specific modulation frequencies without affecting normal tissues, which may have broad implications in oncology.

121 citations


Cites background from "RNA-Seq: a revolutionary tool for t..."

  • ...310 British Journal of Cancer (2012) 106(2), 307 – 313 & 2012 Cancer Research UK T ra n sla tio n a l T h e ra p e u tic s comprehensive assessment of differential gene expression across a broader range of expression levels than microarray-based analysis (Wang et al, 2009)....

    [...]

Journal ArticleDOI
27 Jun 2012-PLOS ONE
TL;DR: Findings suggest that miRNA paly important role in soybean response to SCN and have important implications for further identification of miRNAs under pathogen stress.
Abstract: Soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are known to play important role in plant stress response. However, there are few reports profiling the miRNA expression patterns during pathogen stress. We sequenced four small RNA libraries from two soybean cultivar (Hairbin xiaoheidou, SCN race 3 resistant, Liaodou 10, SCN race 3 susceptible) that grown under un-inoculated and SCN-inoculated soil. Small RNAs were mapped to soybean genome sequence, 364 known soybean miRNA genes were identified in total. In addition, 21 potential miRNA candidates were identified. Comparative analysis of miRNA profiling indicated 101 miRNAs belong to 40 families were SCN-responsive. We also found 20 miRNAs with different express pattern even between two cultivars of the same species. These findings suggest that miRNA paly important role in soybean response to SCN and have important implications for further identification of miRNAs under pathogen stress.

121 citations


Cites background from "RNA-Seq: a revolutionary tool for t..."

  • ...Emerging tools, such as microarray, RNA-seq, RNA interference hold tremendous potential to uncover the mechanism of soybean-SCN interactions [8,9,10,11,12]....

    [...]

Journal ArticleDOI
TL;DR: Deep RNA sequencing of the blastema over a time course in the axolotl found a prominent burst in oncogene expression during the first day and blastemal/limb bud genes peaking at 7 to 14 days, and genes involved in angiogenesis, wound healing, defense/immunity, and bone development are enriched during blastema formation and development.
Abstract: The salamander has the remarkable ability to regenerate its limb after amputation. Cells at the site of amputation form a blastema and then proliferate and differentiate to regrow the limb. To better understand this process, we performed deep RNA sequencing of the blastema over a time course in the axolotl, a species whose genome has not been sequenced. Using a novel comparative approach to analyzing RNA-seq data, we characterized the transcriptional dynamics of the regenerating axolotl limb with respect to the human gene set. This approach involved de novo assembly of axolotl transcripts, RNA-seq transcript quantification without a reference genome, and transformation of abundances from axolotl contigs to human genes. We found a prominent burst in oncogene expression during the first day and blastemal/limb bud genes peaking at 7 to 14 days. In addition, we found that limb patterning genes, SALL genes, and genes involved in angiogenesis, wound healing, defense/immunity, and bone development are enriched during blastema formation and development. Finally, we identified a category of genes with no prior literature support for limb regeneration that are candidates for further evaluation based on their expression pattern during the regenerative process.

121 citations


Cites methods from "RNA-Seq: a revolutionary tool for t..."

  • ...In our study, we examine the axolotl transcriptome using RNA-seq technology, which can provide accurate expression level estimates for genes across a wide range of abundances [17]....

    [...]

Journal ArticleDOI
TL;DR: Molecular methods for detection, identification and genetic characterization of Salmonella associated with poultry and poultry products and the advantages and disadvantages of the established and emerging rapid detection and characterization methods are addressed.

121 citations


Additional excerpts

  • ...Currently, RNA-seq involves initial isolation of the RNA and reverse transcribed to cDNA and sequencing the resulting DNA (Wang et al., 2009; Mutz et al., 2013; Ricke et al., 2013b)....

    [...]

Journal ArticleDOI
03 Oct 2012-PLOS ONE
TL;DR: In this paper, the authors performed de novo transcriptome sequencing for the first time to produce a comprehensive dataset for the Ma bamboo (Dendrocalamus latiflorus Munro).
Abstract: Background: Bamboo occupies an important phylogenetic node in the grass family with remarkable sizes, woodiness and a striking life history. However, limited genetic research has focused on bamboo partially because of the lack of genomic resources. The advent of high-throughput sequencing technologies enables generation of genomic resources in a short time and at a minimal cost, and therefore provides a turning point for bamboo research. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive dataset for the Ma bamboo (Dendrocalamus latiflorus Munro). Results: The Ma bamboo transcriptome was sequenced using the Illumina paired-end sequencing technology. We produced 15,138,726 reads and assembled them into 103,354 scaffolds. A total of 68,229 unigenes were identified, among which 46,087 were annotated in the NCBI non-redundant protein database and 28,165 were annotated in the Swiss-Prot database. Of these annotated unigenes, 11,921 and 10,147 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 45,649 unigenes onto 292 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. The annotated unigenes were compared against Moso bamboo, rice and millet. Unigenes that did not match any of those three sequence datasets are considered to be Ma bamboo unique. We predicted 105 unigenes encoding eight key enzymes involved in lignin biosynthesis. In addition, 621 simple sequence repeats (SSRs) were detected. Conclusion: Our data provide the most comprehensive transcriptomic resource currently available for D. latiflorus Munro. Candidate genes potentially involved in growth and development were identified, and those predicted to be unique to Ma bamboo are expected to give a better insight on Ma bamboo gene diversity. Numerous SSRs characterized contributed to marker development. These data constitute a new valuable resource for genomic studies on D. latiflorus Munro and, more generally, bamboo.

120 citations


Cites background from "RNA-Seq: a revolutionary tool for t..."

  • ...Therefore, transcriptome analysis is essential to interpret the functional elements of the genome and reveal the molecular constituents of cells and tissues [13,14]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors.
Abstract: We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41–52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 × 10 5 distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices. The mRNA population specifies a cell’s identity and helps to govern its present and future activities. This has made transcriptome analysis a general phenotyping method, with expression microarrays of many kinds in routine use. Here we explore the possibility that transcriptome analysis, transcript discovery and transcript refinement can be done effectively in large and complex mammalian genomes by ultra-high-throughput sequencing. Expression microarrays are currently the most widely used methodology for transcriptome analysis, although some limitations persist. These include hybridization and cross-hybridization artifacts 1–3 , dye-based detection issues and design constraints that preclude or seriously limit the detection of RNA splice patterns and previously unmapped genes. These issues have made it difficult for standard array designs to provide full sequence comprehensiveness (coverage of all possible genes, including unknown ones, in large genomes) or transcriptome comprehensiveness (reliable detection of all RNAs of all prevalence classes, including the least abundant ones that are physiologically relevant). Other

12,293 citations

PatentDOI
04 Oct 2000-Science
TL;DR: Serial analysis of gene expression (SAGE) should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states.
Abstract: PROBLEM TO BE SOLVED: To provide a method for preparing a short nucleotide sequence (tag) which is useful to identify a cDNA oligonucleotide and is derived from a restricted position in a mRNA or a cDNA. SOLUTION: This is the method of preparing a tag for identifying the cDNA oligonucleotide. The above method comprises preparing the cDNA oligonucleotide bearing 5' and 3' terminals, collecting cDNA fragments by cutting the cDNA oligonucleotide with a restriction enzyme at the first restriction endonuclease site, separating a cDNA oligonucleotide bearing 5' or 3' terminal and connecting an oligonucleotide linker to the isolated cDNA fragment bearing the cDNA oligonucleotide 5' or 3' terminal. Here, the oligonucleotide linker contains the recognition site of the second restriction endonuclease enzyme and the isolated cDNA fragment is cut with the second restriction endonuclease enzyme which cuts the cDNA fragment in a section separated from the recognition site to obtain the tag for identifying the cDNA oligonucleotide.

4,437 citations

Journal ArticleDOI
TL;DR: This work describes the software MAQ, software that can build assemblies by mapping shotgun short reads to a reference genome, using quality scores to derive genotype calls of the consensus sequence of a diploid genome, e.g., from a human sample.
Abstract: New sequencing technologies promise a new era in the use of DNA sequence. However, some of these technologies produce very short reads, typically of a few tens of base pairs, and to use these reads effectively requires new algorithms and software. In particular, there is a major issue in efficiently aligning short reads to a reference genome and handling ambiguity or lack of accuracy in this alignment. Here we introduce the concept of mapping quality, a measure of the confidence that a read actually comes from the position it is aligned to by the mapping algorithm. We describe the software MAQ that can build assemblies by mapping shotgun short reads to a reference genome, using quality scores to derive genotype calls of the consensus sequence of a diploid genome, e.g., from a human sample. MAQ makes full use of mate-pair information and estimates the error probability of each read alignment. Error probabilities are also derived for the final genotype calls, using a Bayesian statistical model that incorporates the mapping qualities, error probabilities from the raw sequence quality scores, sampling of the two haplotypes, and an empirical model for correlated errors at a site. Both read mapping and genotype calling are evaluated on simulated data and real data. MAQ is accurate, efficient, versatile, and user-friendly. It is freely available at http://maq.sourceforge.net.

2,927 citations

Journal ArticleDOI
TL;DR: It is found that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice to sequence each mRNA sample only once (i.e., using one lane).
Abstract: Ultra-high-throughput sequencing is emerging as an attractive alternative to microarrays for genotyping, analysis of methylation patterns, and identification of transcription factor binding sites. Here, we describe an application of the Illumina sequencing (formerly Solexa sequencing) platform to study mRNA expression levels. Our goals were to estimate technical variance associated with Illumina sequencing in this context and to compare its ability to identify differentially expressed genes with existing array technologies. To do so, we estimated gene expression differences between liver and kidney RNA samples using multiple sequencing replicates, and compared the sequencing data to results obtained from Affymetrix arrays using the same RNA samples. We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice to sequence each mRNA sample only once (i.e., using one lane). The information in a single lane of Illumina sequencing data appears comparable to that in a single array in enabling identification of differentially expressed genes, while allowing for additional analyses such as detection of low-expressed genes, alternative splice variants, and novel transcripts. Based on our observations, we propose an empirical protocol and a statistical framework for the analysis of gene expression using ultra-high-throughput sequencing technology.

2,834 citations

Journal ArticleDOI
TL;DR: The program SOAP is designed to handle the huge amounts of short reads generated by parallel sequencing using the new generation Illumina-Solexa sequencing technology, which supports multi-threaded parallel computing and has a batch module for multiple query sets.
Abstract: Summary: We have developed a program SOAP for efficient gapped and ungapped alignment of short oligonucleotides onto reference sequences. The program is designed to handle the huge amounts of short reads generated by parallel sequencing using the new generation Illumina-Solexa sequencing technology. SOAP is compatible with numerous applications, including single-read or pair-end resequencing, small RNA discovery and mRNA tag sequence mapping. SOAP is a command-driven program, which supports multi-threaded parallel computing, and has a batch module for multiple query sets. Availability: http://soap.genomics.org.cn Contact: soap@genomics.org.cn

2,729 citations


"RNA-Seq: a revolutionary tool for t..." refers methods in this paper

  • ...There are several programs for mapping reads to the genome, including ELAND, SOA...

    [...]