scispace - formally typeset
Search or ask a question
Journal ArticleDOI

RNA-Seq: a revolutionary tool for transcriptomics

01 Jan 2009-Nature Reviews Genetics (Nature Publishing Group)-Vol. 10, Iss: 1, pp 57-63
TL;DR: The RNA-Seq approach to transcriptome profiling that uses deep-sequencing technologies provides a far more precise measurement of levels of transcripts and their isoforms than other methods.
Abstract: RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review presents recent advances in laboratory methods for collection of high-throughput phylogenetic data and challenges and constraints for phylogenetic analysis of these data, and offers recommendations for the most promising protocols and data-analysis workflows currently available.
Abstract: High-throughput genomic sequencing is rapidly changing the field of phylogenetics by decreasing the cost and increasing the quantity and rate of data collection by several orders of magnitude. This deluge of data is exerting tremendous pressure on downstream data-analysis methods providing new opportunities for method development. In this review, we present (a) recent advances in laboratory methods for collection of high-throughput phylogenetic data and (b) challenges and constraints for phylogenetic analysis of these data. We compare the merits of multiple laboratory approaches, compare methods of data analysis, and offer recommendations for the most promising protocols and data-analysis workflows currently available for phylogenetics. We also discuss several strategies for increasing accuracy, with an emphasis on locus selection and proper model choice.

437 citations


Cites methods from "RNA-Seq: a revolutionary tool for t..."

  • ...Transcriptome sequencing (also termed RNA-seq) consists of extracting whole RNA of an organism from a specific tissue or set of tissues, reverse transcribing complementary DNA (cDNA) from the RNA, and sequencing the cDNA on a high-throughput sequencing platform (Figure 1; Wang et al. 2009)....

    [...]

Journal ArticleDOI
TL;DR: This Review outlines the coordination of common metabolic tasks, including nutrient uptake, central metabolism, the generation of energy, the supply of amino acids and protein synthesis.
Abstract: Beyond fuelling cellular activities with building blocks and energy, metabolism also integrates environmental conditions into intracellular signals. The underlying regulatory network is complex and multifaceted: it ranges from slow interactions, such as changing gene expression, to rapid ones, such as the modulation of protein activity via post-translational modification or the allosteric binding of small molecules. In this Review, we outline the coordination of common metabolic tasks, including nutrient uptake, central metabolism, the generation of energy, the supply of amino acids and protein synthesis. Increasingly, a set of key metabolites is recognized to control individual regulatory circuits, which carry out specific functions of information input and regulatory output. Such a modular view of microbial metabolism facilitates an intuitive understanding of the molecular mechanisms that underlie cellular decision making.

434 citations

Journal ArticleDOI
TL;DR: This work presents Corset, a method that hierarchically clusters contigs using shared reads and expression, then summarizes read counts to clusters, ready for statistical testing and demonstrates that Corset out-performs alternative methods.
Abstract: Next generation sequencing has made it possible to perform differential gene expression studies in non-model organisms. For these studies, the need for a reference genome is circumvented by performing de novo assembly on the RNA-seq data. However, transcriptome assembly produces a multitude of contigs, which must be clustered into genes prior to differential gene expression detection. Here we present Corset, a method that hierarchically clusters contigs using shared reads and expression, then summarizes read counts to clusters, ready for statistical testing. Using a range of metrics, we demonstrate that Corset out-performs alternative methods. Corset is available from https://code.google.com/p/corset-project/.

431 citations


Cites background from "RNA-Seq: a revolutionary tool for t..."

  • ...Background Next-generation sequencing of RNA, RNA-seq, is a powerful technology for studying various aspects of the transcriptome; it has a broad range of applications, including gene discovery, detection of alternative splicing events, differential expression analysis, fusion detection and identification of variants such as SNPs and posttranscriptional editing [1,2]....

    [...]

Journal ArticleDOI
TL;DR: The chickpea transcripts set generated here provides a resource for gene discovery and development of functional molecular markers and the strategy for de novo assembly of transcriptome data presented here will be helpful in other similar transcriptome studies.
Abstract: Chickpea ranks third among the food legume crops production in the world. However, the genomic resources available for chickpea are still very limited. In the present study, the transcriptome of chickpea was sequenced with short reads on Illumina Genome Analyzer platform. We have assessed the effect of sequence quality, various assembly parameters and assembly programs on the final assembly output. We assembled ∼107million high-quality trimmed reads using Velvet followed by Oases with optimal parameters into a non-redundant set of 53 409 transcripts (≥100 bp), representing about 28 Mb of unique transcriptome sequence. The average length of transcripts was 523 bp and N50 length of 900 bp with coverage of 25.7 rpkm (reads per kilobase per million). At the protein level, a total of 45 636 (85.5%) chickpea transcripts showed significant similarity with unigenes/predicted proteins from other legumes or sequenced plant genomes. Functional categorization revealed the conservation of genes involved in various biological processes in chickpea. In addition, we identified simple sequence repeat motifs in transcripts. The chickpea transcripts set generated here provides a resource for gene discovery and development of functional molecular markers. In addition, the strategy for de novo assembly of transcriptome data presented here will be helpful in other similar transcriptome studies.

431 citations


Cites methods from "RNA-Seq: a revolutionary tool for t..."

  • ...The digital expression profiling, also called RNA-Seq, is a powerful and efficient approach for gene expression analysis.(26,27) The mapping of all the reads onto the non-redundant set of chickpea transcripts revealed that the number of reads corresponding to each transcript ranged from 14 (0....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors propose principles for the initial functional characterization of cancer risk loci, with a focus on non-coding variants, and define post-GWAS functional characterization.
Abstract: Genome wide association studies (GWAS) have identified more than 200 mostly new common low-penetrance susceptibility loci for cancers. The predicted risk associated with each locus is generally modest (with a per-allele odds ratio typically less than 2) and so, presumably, are the functional effects of individual genetic variants conferring disease susceptibility. Perhaps the greatest challenge in the ‘post-GWAS’ era is to understand the functional consequences of these loci. Biological insights can then be translated to clinical benefits, including reliable biomarkers and effective strategies for screening and disease prevention. The purpose of this article is to propose principles for the initial functional characterization of cancer risk loci, with a focus on non-coding variants, and to define ‘post-GWAS’ functional characterization. By December 2010, there were 1,212 published GWAS studies1 reporting significant (P < 5 × 10−8) associations for 210 traits (Table 1), and the Catalog of Published GWAS states that by March 2011, 812 publications reported 3,977 SNP associations1. This is likely a small fraction of the common susceptibility loci of low penetrance that will eventually be identified. Despite these successes in identifying risk loci, the causal variant and/or the molecular basis of risk etiology has been determined for only a small fraction of these associations2–4. Plausible candidate genes can be based on proximity to risk loci, but few have so far been defined in a more systematic manner (Supplementary Table 1). Table 1 The genomic context in which a variant is found can be used as preliminary functional analysis Increased investment in post-GWAS functional characterization of risk loci5 has now been advocated across diseases and for cardiovascular disease and diabetes6. For cancer biology, the complex interplay between genetics and the environment in many cancers poses a particularly exciting challenge for post-GWAS research. Here we suggest a systematic strategy for understanding how cancer-associated variants exert their effects. We mostly refer to SNPs throughout the paper, but we recognize that other types of common genetic (for example, copy number variants) or epigenetic variation may influence risk. Our understanding of the way in which a risk variant initiates disease pathogenesis progresses from statistical association between genetic variation and trait or disease variation to functionality and causality. The functional consequences of variants in protein-coding regions causing most monogenic disorders are more readily interpreted because we know the genetic code. For non-Mendelian or multifactorial traits, most of the common DNA variants have so far mapped to non-protein–coding regions2, where our understanding of functional consequences and causality is more rudimentary. Our hypothesis is that the trait-associated alleles exert their effects by influencing transcriptional output (such as transcript levels and splicing) through multiple mechanisms. We emphasize appropriate assays and models to test the functional effects of both SNPs and genes mapping to cancer predisposition loci. Although much of what is written is applicable to alleles discovered for any trait, the section on modeling gene effects will emphasize measuring cancer-related phenotypes. At some loci, multiple, independently associated risk alleles rather than single risk alleles may be functionally responsible for the occurrence of disease. Genotyping susceptibility loci (and their correlated variants) in multiple populations with different linkage disequilibrium (LD) structures may prove effective in substantially reducing the number of potentially causative variants (that is, the same causal variant may segregate in multiple populations), as shown for the FGFR2 locus in breast cancer7, but for most loci there will remain a set of potentially causative variants that cannot be separated at the statistical level from case-control genotype data. A susceptibility locus should be re-sequenced to ascertain all genetic variation, identifying candidate functional or causal variants and identifying candidate causal genes. Ideally, the identification of a causal SNP would be the next step to reveal the molecular mechanisms of risk modification. Practically, however, it is unclear what the criteria for causality should be, particularly in non-protein–coding regions. Thus, although we propose a framework set of analyses (Box 1), we acknowledge that the techniques and methods will continue to evolve with the field. Box 1 Strategies to progress from tag SNP to mechanism Target resequencing efforts using linkage disequilibrium (LD) structure. Use other populations to refine LD regions (for example African ancestry with shorter LD and more heterogeneity). Determine expression levels of nearby genes as a function of genotype at each locus (eQTL). Characterize gene regulatory regions by multiple empirical techniques bearing in mind that these are tissue and context specific. Combine regulatory regions with risk loci using coordinates from multiple reference genomes to capture all variation within the shorter regulatory regions that correlates with the tag SNP at each locus. Multiple experimental manipulations in model systems are needed to progressively implicate transcription units (genes) in mechanisms relevant to the associated loci: Knockouts of regulatory regions in animal (difficult and may be limited by functional redundancy, but new targeting methods in rat are promising) models followed by genome-wide expression analysis. Use chromatin association methods (3C, CHIA-PET) of regulatory regions to determine the identity of target genes (compare with eQTL data). Targeted gene perturbations in somatic cell models. Explore fully genome-wide eQTL and miRNA quantitative variation correlation in relevant tissues and cells. Explore epigenetic mechanisms in the context of genome-wide genetic polymorphism. Employ cell models and tissue reconstructions to evaluate mechanisms using gene perturbations and polymorphic variants. The human cancer cell xenograft has re-emerged as a minimal in vivo validation of these models. Above all, resist the temptation to equate any partial functional evidence as sufficient. Published claims of functional relevance should be fully evaluated using the steps detailed above.

431 citations

References
More filters
Journal ArticleDOI
TL;DR: Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors.
Abstract: We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41–52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 × 10 5 distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices. The mRNA population specifies a cell’s identity and helps to govern its present and future activities. This has made transcriptome analysis a general phenotyping method, with expression microarrays of many kinds in routine use. Here we explore the possibility that transcriptome analysis, transcript discovery and transcript refinement can be done effectively in large and complex mammalian genomes by ultra-high-throughput sequencing. Expression microarrays are currently the most widely used methodology for transcriptome analysis, although some limitations persist. These include hybridization and cross-hybridization artifacts 1–3 , dye-based detection issues and design constraints that preclude or seriously limit the detection of RNA splice patterns and previously unmapped genes. These issues have made it difficult for standard array designs to provide full sequence comprehensiveness (coverage of all possible genes, including unknown ones, in large genomes) or transcriptome comprehensiveness (reliable detection of all RNAs of all prevalence classes, including the least abundant ones that are physiologically relevant). Other

12,293 citations

PatentDOI
04 Oct 2000-Science
TL;DR: Serial analysis of gene expression (SAGE) should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states.
Abstract: PROBLEM TO BE SOLVED: To provide a method for preparing a short nucleotide sequence (tag) which is useful to identify a cDNA oligonucleotide and is derived from a restricted position in a mRNA or a cDNA. SOLUTION: This is the method of preparing a tag for identifying the cDNA oligonucleotide. The above method comprises preparing the cDNA oligonucleotide bearing 5' and 3' terminals, collecting cDNA fragments by cutting the cDNA oligonucleotide with a restriction enzyme at the first restriction endonuclease site, separating a cDNA oligonucleotide bearing 5' or 3' terminal and connecting an oligonucleotide linker to the isolated cDNA fragment bearing the cDNA oligonucleotide 5' or 3' terminal. Here, the oligonucleotide linker contains the recognition site of the second restriction endonuclease enzyme and the isolated cDNA fragment is cut with the second restriction endonuclease enzyme which cuts the cDNA fragment in a section separated from the recognition site to obtain the tag for identifying the cDNA oligonucleotide.

4,437 citations

Journal ArticleDOI
TL;DR: This work describes the software MAQ, software that can build assemblies by mapping shotgun short reads to a reference genome, using quality scores to derive genotype calls of the consensus sequence of a diploid genome, e.g., from a human sample.
Abstract: New sequencing technologies promise a new era in the use of DNA sequence. However, some of these technologies produce very short reads, typically of a few tens of base pairs, and to use these reads effectively requires new algorithms and software. In particular, there is a major issue in efficiently aligning short reads to a reference genome and handling ambiguity or lack of accuracy in this alignment. Here we introduce the concept of mapping quality, a measure of the confidence that a read actually comes from the position it is aligned to by the mapping algorithm. We describe the software MAQ that can build assemblies by mapping shotgun short reads to a reference genome, using quality scores to derive genotype calls of the consensus sequence of a diploid genome, e.g., from a human sample. MAQ makes full use of mate-pair information and estimates the error probability of each read alignment. Error probabilities are also derived for the final genotype calls, using a Bayesian statistical model that incorporates the mapping qualities, error probabilities from the raw sequence quality scores, sampling of the two haplotypes, and an empirical model for correlated errors at a site. Both read mapping and genotype calling are evaluated on simulated data and real data. MAQ is accurate, efficient, versatile, and user-friendly. It is freely available at http://maq.sourceforge.net.

2,927 citations

Journal ArticleDOI
TL;DR: It is found that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice to sequence each mRNA sample only once (i.e., using one lane).
Abstract: Ultra-high-throughput sequencing is emerging as an attractive alternative to microarrays for genotyping, analysis of methylation patterns, and identification of transcription factor binding sites. Here, we describe an application of the Illumina sequencing (formerly Solexa sequencing) platform to study mRNA expression levels. Our goals were to estimate technical variance associated with Illumina sequencing in this context and to compare its ability to identify differentially expressed genes with existing array technologies. To do so, we estimated gene expression differences between liver and kidney RNA samples using multiple sequencing replicates, and compared the sequencing data to results obtained from Affymetrix arrays using the same RNA samples. We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice to sequence each mRNA sample only once (i.e., using one lane). The information in a single lane of Illumina sequencing data appears comparable to that in a single array in enabling identification of differentially expressed genes, while allowing for additional analyses such as detection of low-expressed genes, alternative splice variants, and novel transcripts. Based on our observations, we propose an empirical protocol and a statistical framework for the analysis of gene expression using ultra-high-throughput sequencing technology.

2,834 citations

Journal ArticleDOI
TL;DR: The program SOAP is designed to handle the huge amounts of short reads generated by parallel sequencing using the new generation Illumina-Solexa sequencing technology, which supports multi-threaded parallel computing and has a batch module for multiple query sets.
Abstract: Summary: We have developed a program SOAP for efficient gapped and ungapped alignment of short oligonucleotides onto reference sequences. The program is designed to handle the huge amounts of short reads generated by parallel sequencing using the new generation Illumina-Solexa sequencing technology. SOAP is compatible with numerous applications, including single-read or pair-end resequencing, small RNA discovery and mRNA tag sequence mapping. SOAP is a command-driven program, which supports multi-threaded parallel computing, and has a batch module for multiple query sets. Availability: http://soap.genomics.org.cn Contact: soap@genomics.org.cn

2,729 citations


"RNA-Seq: a revolutionary tool for t..." refers methods in this paper

  • ...There are several programs for mapping reads to the genome, including ELAND, SOA...

    [...]