scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Road network drives urban ecosystems - a longitudinal analysis of impact of roads in the central Himalaya

TL;DR: In this paper, the authors investigated spatio-temporal paradigm of the impact of road networks on urban ecosystem dynamics by analysing the composition and configuration of land use land cover (LULC) and la...
Abstract: This study investigates spatio-temporal paradigm of the impact of road networks on urban ecosystem dynamics (UED) by analysing the composition and configuration of land use land cover (LULC) and la...
Citations
More filters
Journal ArticleDOI
13 Dec 2022-Land
TL;DR: In this article , the authors quantify land use/land cover and landscape pattern dynamics in response to urban growth and expansion in and around two emerging urban centers (Dharamsala and Pithoragarh, Western Himalaya) over the past two decades.
Abstract: The Western Himalaya are experiencing and epitomizing growing urbanization trends due to rapid population and tourism rise across the Indian Himalayan region. The pace and process of urban development in these regions are largely unplanned and unregulated; consequently, the altered landscape composition and configuration are influencing key ecological processes and functions supporting human wellbeing. Existing urbanization research addressing this issue has mainly focused on large urban centers, underrepresenting the potential role of medium-sized cities in sustainable landscape planning. Thus, this study attempted to quantify land use/land cover and landscape pattern dynamics in response to urban growth and expansion in and around two emerging urban centers—Dharamsala and Pithoragarh, Western Himalaya, over the past two decades. The study was split into three temporal periods, and intensity analysis was used to characterize transformational patterns in the city and outer zone of each landscape. The results indicate that, during the T2 and T3 period, the overall LULC dynamics was highest in Dharamsala and Pithoragarh, respectively. The urban development in Dharamsala occurred at the expense of cropland followed by vegetation and forest, while, in Pithoragarh, it occurred at the expense of cropland followed by vegetation loss dominated. Furthermore, the landscape pattern results highlighted the aggregation and homogenization at the city level, with a higher degree of disaggregation, fragmentation, and heterogeneity in outer zone. This paper highlights the importance of transformational patterns based on intensity analysis and landscape patterns to sustainable landscape development and planning. In addition, considering the past to present urban development trajectories, this study purposes a framework for sustainable landscape development in Himalaya for urban planners and policymakers.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: A general statistical methodology for the analysis of multivariate categorical data arising from observer reliability studies is presented and tests for interobserver bias are presented in terms of first-order marginal homogeneity and measures of interob server agreement are developed as generalized kappa-type statistics.
Abstract: This paper presents a general statistical methodology for the analysis of multivariate categorical data arising from observer reliability studies. The procedure essentially involves the construction of functions of the observed proportions which are directed at the extent to which the observers agree among themselves and the construction of test statistics for hypotheses involving these functions. Tests for interobserver bias are presented in terms of first-order marginal homogeneity and measures of interobserver agreement are developed as generalized kappa-type statistics. These procedures are illustrated with a clinical diagnosis example from the epidemiological literature.

64,109 citations


"Road network drives urban ecosystem..." refers background in this paper

  • ...OA and Kappa of more than 90% and 0.85, respectively, for both the years suggest reliable classification of our LULC maps (Landis and Koch 1977; Pringle et al. 2009)....

    [...]

Journal ArticleDOI
TL;DR: Tropical deforestation is driven by identifiable regional patterns of causal factor synergies, of which the most prominent are economic factors, institutions, national policies, and remote influences driving agricultural expansion, wood extraction, and infrastructure extension (at the proximate level).
Abstract: Articles O ne of the primary causes of global environmental change is tropical deforestation, but the question of what factors drive deforestation remains largely unanswered (NRC 1999). Various hypotheses have produced rich arguments , but empirical evidence on the causes of deforestation continues to be largely based on cross-national statistical In some cases, these analyses are based on debatable data on rates of forest cover change (Palo 1999). The two major, mutually exclusive—and still unsatisfactory—explanations for tropical deforestation are single-factor causation and irre-ducible complexity. On the one hand, proponents of single-factor causation suggest various primary causes, such as shift-On the other hand, correlations between deforestation and multiple causative factors are many and varied , revealing no distinct pattern In addition to chronicling these attempts to identify general causes of deforestation through global-scale statistical analyses, the literature is rich in local-scale case studies investigating the causes and processes of forest cover change in specific localities. Our aim with this study is to generate from local-scale case studies a general understanding of the prox-imate causes and underlying driving forces of tropical deforestation while preserving the descriptive richness of these studies. Proximate causes are human activities or immediate actions at the local level, such as agricultural expansion, that originate from intended land use and directly impact forest cover. Underlying driving forces are fundamental social processes, such as human population dynamics or agricultural policies, that underpin the proximate causes and either operate at the local level or have an indirect impact from the national or global level. We analyzed the frequency of proximate causes and underlying driving forces of deforestation, including their interactions , as reported in 152 subnational case studies. We show that tropical deforestation is driven by identifiable regional patterns of causal factor synergies, of which the most prominent are economic factors, institutions, national policies, and remote influences (at the underlying level) driving agricultural expansion, wood extraction, and infrastructure extension (at the proximate level). Our findings reveal that prior stud-Helmut Geist (e-mail: geist@geog.ucl.ac.be) is a postdoctoral researcher (geography) in the field of human drivers of global environmental change and executive director of the Land Use and Cover Change (LUCC) core project of the International Geosphere-Biosphere Eric Lambin is a professor of geography with research interests in remote sensing and human ecology applied to studies of deforestation, desertification, and bio-mass burning in tropical regions. He is the chair of the IGBP and IHDP …

2,919 citations


"Road network drives urban ecosystem..." refers background in this paper

  • ...Land cover conversions occur by virtue of various socioeconomic, political and biophysical variables such as population dynamics, income, water availability, etc. (Geist and Lambin 2002)....

    [...]

Journal ArticleDOI
TL;DR: Roads are a widespread and increasing feature of most landscapes. as mentioned in this paper reviewed the scientific liter- ature on the ecological effects of roads and found support for the general conclusion that they are associated with negative effects on biotic integrity in both terrestrial and aquatic ecosystems.
Abstract: Roads are a widespread and increasing feature of most landscapes. We reviewed the scientific liter- ature on the ecological effects of roads and found support for the general conclusion that they are associated with negative effects on biotic integrity in both terrestrial and aquatic ecosystems. Roads of all kinds have seven general effects: mortality from road construction, mortality from collision with vehicles, modification of animal behavior, alteration of the physical environment, alteration of the chemical environment, spread of exotics, and increased use of areas by humans. Road construction kills sessile and slow-moving organisms, injures organisms adjacent to a road, and alters physical conditions beneath a road. Vehicle collisions affect the demography of many species, both vertebrates and invertebrates; mitigation measures to reduce roadkill have been only partly successful. Roads alter animal behavior by causing changes in home ranges, move- ment, reproductive success, escape response, and physiological state. Roads change soil density, temperature, soil water content, light levels, dust, surface waters, patterns of runoff, and sedimentation, as well as adding heavy metals (especially lead), salts, organic molecules, ozone, and nutrients to roadside environments. Roads promote the dispersal of exotic species by altering habitats, stressing native species, and providing movement corridors. Roads also promote increased hunting, fishing, passive harassment of animals, and landscape modifications. Not all species and ecosystems are equally affected by roads, but overall the pres- ence of roads is highly correlated with changes in species composition, population sizes, and hydrologic and geomorphic processes that shape aquatic and riparian systems. More experimental research is needed to com- plement post-hoc correlative studies. Our review underscores the importance to conservation of avoiding con- struction of new roads in roadless or sparsely roaded areas and of removal or restoration of existing roads to benefit both terrestrial and aquatic biota.

2,506 citations

Journal ArticleDOI
TL;DR: A wide range of strategies to reduce impervious surfaces and their impacts on water resources can be applied to community planning, site-level planning and design, and land use regulation as mentioned in this paper.
Abstract: Planners concerned with water resource protection in urbanizing areas must deal with the adverse impacts of polluted runoff. Impervious surface coverage is a quantifiable land-use indicator that correlates closely with these impacts. Once the role and distribution of impervious coverage are understood, a wide range of strategies to reduce impervious surfaces and their impacts on water resources can be applied to community planning, site-level planning and design, and land use regulation. These strategies complement many current trends in planning, zoning, and landscape design that go beyond water pollution concerns to address the quality of life in a community.

2,087 citations

Journal ArticleDOI
TL;DR: This review paper, which summarizes the methods and the results of digital change detection in the optical/infrared domain, has as its primary objective a synthesis of the state of the art today.
Abstract: Techniques based on multi-temporal, multi-spectral, satellite-sensor-acquired data have demonstrated potential as a means to detect, identify, map and monitor ecosystem changes, irrespective of their causal agents. This review paper, which summarizes the methods and the results of digital change detection in the optical/infrared domain, has as its primary objective a synthesis of the state of the art today. It approaches digital change detection from three angles. First, the different perspectives from which the variability in ecosystems and the change events have been dealt with are summarized. Change detection between pairs of images (bi-temporal) as well as between time profiles of imagery derived indicators (temporal trajectories), and, where relevant, the appropriate choices for digital imagery acquisition timing and change interval length definition, are discussed. Second, pre-processing routines either to establish a more direct linkage between remote sensing data and biophysical phenomena, or to temporally mosaic imagery and extract time profiles, are reviewed. Third, the actual change detection methods themselves are categorized in an analytical framework and critically evaluated. Ultimately, the paper highlights how some of these methodological aspects are being fine-tuned as this review is being written, and we summarize the new developments that can be expected in the near future. The review highlights the high complementarity between different change detection methods.

2,043 citations


"Road network drives urban ecosystem..." refers methods in this paper

  • ...This was computed by post-classification change detection method (Coppin et al. 2004) using classified maps of 2000 and 2017....

    [...]