scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Roadmap of optical communications

TL;DR: In this paper, 16 researchers, each a world-leading expert in their respective subfields, contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.
Abstract: Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Focusing on the optical transport and switching layer, aspects of large-scale spatial multiplexing, massive opto-electronic arrays and holistic optics-electronics-DSP integration, as well as optical node architectures for switching and multiplexed of spatial and spectral superchannels are covered.
Abstract: Celebrating the 20th anniversary of Optics Express, this paper reviews the evolution of optical fiber communication systems, and through a look at the previous 20 years attempts to extrapolate fiber-optic technology needs and potential solution paths over the coming 20 years. Well aware that 20-year extrapolations are inherently associated with great uncertainties, we still hope that taking a significantly longer-term view than most texts in this field will provide the reader with a broader perspective and will encourage the much needed out-of-the-box thinking to solve the very significant technology scaling problems ahead of us. Focusing on the optical transport and switching layer, we cover aspects of large-scale spatial multiplexing, massive opto-electronic arrays and holistic optics-electronics-DSP integration, as well as optical node architectures for switching and multiplexing of spatial and spectral superchannels.

498 citations

Journal ArticleDOI
TL;DR: This work shows that the next major interconnect dissipations are in the electronic circuits for receiver amplifiers, timing recovery, and multiplexing, and it can address these through the integration of photodetectors to reduce or eliminate receiver circuit energies, free-space optics to eliminate the need for timing andmultiplexing circuits, and using optics generally to save power by running large synchronous systems.
Abstract: Optics offers unique opportunities for reducing energy in information processing and communications while simultaneously resolving the problem of interconnect bandwidth density inside machines. Such energy dissipation overall is now at environmentally significant levels; the source of that dissipation is progressively shifting from logic operations to interconnect energies. Without the prospect of substantial reduction in energy per bit communicated, we cannot continue the exponential growth of our use of information. The physics of optics and optoelectronics fundamentally addresses both interconnect energy and bandwidth density, and optics may be the only scalable solution to such problems. Here we summarize the corresponding background, status, opportunities, and research directions for optoelectronic technology and novel optics, including subfemtojoule devices in waveguide and novel two-dimensional (2-D) array optical systems. We compare different approaches to low-energy optoelectronic output devices and their scaling, including lasers, modulators and LEDs, optical confinement approaches (such as resonators) to enhance effects, and the benefits of different material choices, including 2-D materials and other quantum-confined structures. With such optoelectronic energy reductions, and the elimination of line charging dissipation by the use optical connections, the next major interconnect dissipations are in the electronic circuits for receiver amplifiers, timing recovery, and multiplexing. We show we can address these through the integration of photodetectors to reduce or eliminate receiver circuit energies, free-space optics to eliminate the need for timing and multiplexing circuits (while also solving bandwidth density problems), and using optics generally to save power by running large synchronous systems. One target concept is interconnects from ∼1 cm to ∼10 m that have the same energy (∼10 fJ/bit) and simplicity as local electrical wires on chip.

485 citations

Journal ArticleDOI
TL;DR: Optics offers unique opportunities for reducing energy in information processing and communications while resolving the problem of interconnect bandwidth density inside machines as discussed by the authors, and the physics of optics and optoelectronics fundamentally address both interconnect energy and bandwidth density.
Abstract: Optics offers unique opportunities for reducing energy in information processing and communications while resolving the problem of interconnect bandwidth density inside machines. Such energy dissipation overall is now at environmentally significant levels; the source of that dissipation is progressively shifting from logic operations to interconnect energies. Without the prospect of substantial reduction in energy per bit communicated, we cannot continue the exponential growth of our use of information. The physics of optics and optoelectronics fundamentally addresses both interconnect energy and bandwidth density, and optics may be the only scalable solution to such problems. Here we summarize the corresponding background, status, opportunities, and research directions for optoelectronic technology and novel optics, including sub-femtojoule devices in waveguide and novel 2D array optical systems. We compare different approaches to low-energy optoelectronic output devices and their scaling, including lasers, modulators and LEDs, optical confinement approaches (such as resonators) to enhance effects, and the benefits of different material choices, including 2D materials and other quantum-confined structures. Beyond the elimination of line charging by the use optical connections, the next major interconnect dissipations are in the electronic circuits for receiver amplifiers, timing recovery and multiplexing. We can address these through the integration of photodetectors to reduce or eliminate receiver circuit energies, free-space optics to eliminate the need for timing and multiplexing circuits (while solving bandwidth density problems), and using optics generally to save power by running large synchronous systems. One target concept is interconnects from ~ 1 cm to ~ 10 m that have the same energy (~ 10fJ/bit) and simplicity as local electrical wires on chip.

315 citations

Journal ArticleDOI
20 Mar 2017
TL;DR: The nonlinear Fourier transform is a transmission and signal processing technique that makes positive use of the Kerr nonlinearity in optical fibre channels.
Abstract: Fiber-optic communication systems are nowadays facing serious challenges due to the fast growing demand on capacity from various new applications and services. It is now well recognized that nonlinear effects limit the spectral efficiency and transmission reach of modern fiber-optic communications. Nonlinearity compensation is therefore widely believed to be of paramount importance for increasing the capacity of future optical networks. Recently, there has been steadily growing interest in the application of a powerful mathematical tool—the nonlinear Fourier transform (NFT)—in the development of fundamentally novel nonlinearity mitigation tools for fiber-optic channels. It has been recognized that, within this paradigm, the nonlinear crosstalk due to the Kerr effect is effectively absent, and fiber nonlinearity due to the Kerr effect can enter as a constructive element rather than a degrading factor. The novelty and the mathematical complexity of the NFT, the versatility of the proposed system designs, and the lack of a unified vision of an optimal NFT-type communication system, however, constitute significant difficulties for communication researchers. In this paper, we therefore survey the existing approaches in a common framework and review the progress in this area with a focus on practical implementation aspects. First, an overview of existing key algorithms for the efficacious computation of the direct and inverse NFT is given, and the issues of accuracy and numerical complexity are elucidated. We then describe different approaches for the utilization of the NFT in practical transmission schemes. After that we discuss the differences, advantages, and challenges of various recently emerged system designs employing the NFT, as well as the spectral efficiency estimates available up-to-date. With many practical implementation aspects still being open, our mini-review is aimed at helping researchers assess the perspectives, understand the bottlenecks, and envision the development paths in the upcoming NFT-based transmission technologies.

286 citations

Proceedings ArticleDOI
Michal Lipson1
02 Jul 2012
TL;DR: In this paper, the authors demonstrated FWM-based frequency conversion in waveguides using as little as 1 mW of pump power in a ring-resonator geometry, and ∼100 mW over bandwidths exceeding 800 nm in a straight-waveguide device.
Abstract: Silicon is evolving as a versatile photonic platform with multiple functionalities that can be seamlessly integrated. The tool box is rich starting from the ability to guide and amplify multiple wavelength sources at GHz bandwidths, to optomechanical MEMS. The strong confinement of light in ultra small structures also enables the generation of strong optical forces. We have recently shown that nonlinear optical forces can enable controllable manipulation of photonic structures. These advances should enable future micro-optomechanical systems (MOMS) with novel and distinct functionalities. A research area that recently has emerged is nonlinear optics using silicon photonics. Since the birth of nonlinear optics, researchers have continually focused on developing efficient nonlinear optical devices that require low optical powers. The strong light confinement in silicon waveguides results in a high effective nonlinearity ad enables fine tuning of waveguide dispersion which is essential for phase matching of parametric nonlinear optical processes such as four-wave-mixing (FWM) We demonstrated FWM-based frequency conversion in waveguides using as little as 1 mW of pump power in a ring-resonator geometry, and ∼100 mW of pump power over bandwidths exceeding 800 nm in a straight-waveguide device. In addition, by using the concept of time-space duality we have shown the temporally stretching and compressing of optical waveforms which allows for seamless transformation between the GHz and THz regimes.

235 citations

References
More filters
Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

Book
Govind P. Agrawal1
01 Jan 1989
TL;DR: The field of nonlinear fiber optics has advanced enough that a whole book was devoted to it as discussed by the authors, which has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field.
Abstract: Nonlinear fiber optics concerns with the nonlinear optical phenomena occurring inside optical fibers. Although the field ofnonlinear optics traces its beginning to 1961, when a ruby laser was first used to generate the second-harmonic radiation inside a crystal [1], the use ofoptical fibers as a nonlinear medium became feasible only after 1970 when fiber losses were reduced to below 20 dB/km [2]. Stimulated Raman and Brillouin scatterings in single-mode fibers were studied as early as 1972 [3] and were soon followed by the study of other nonlinear effects such as self- and crossphase modulation and four-wave mixing [4]. By 1989, the field ofnonlinear fiber optics has advanced enough that a whole book was devoted to it [5]. This book or its second edition has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field of nonlinear fiber optics.

15,770 citations

Journal ArticleDOI
TL;DR: An unknown quantum state \ensuremath{\Vert}\ensure Math{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations.
Abstract: An unknown quantum state \ensuremath{\Vert}\ensuremath{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations. To do so the sender, ``Alice,'' and the receiver, ``Bob,'' must prearrange the sharing of an EPR-correlated pair of particles. Alice makes a joint measurement on her EPR particle and the unknown quantum system, and sends Bob the classical result of this measurement. Knowing this, Bob can convert the state of his EPR particle into an exact replica of the unknown state \ensuremath{\Vert}\ensuremath{\varphi}〉 which Alice destroyed.

11,600 citations

Journal ArticleDOI
TL;DR: This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination.
Abstract: The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography, and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.

2,781 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications, and showed that the results achieved in both multicore and multimode optical fibers are documented.
Abstract: This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

2,629 citations