scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Robust Design of ANFIS-Based Blade Pitch Controller for Wind Energy Conversion Systems Against Wind Speed Fluctuations

TL;DR: In this article, an adaptive neuro-fuzzy inference system (ANFIS) is proposed for blade pitch control of wind energy conversion systems (WECS) instead of the conventional controllers.
Abstract: Wind speed fluctuations and load demand variations represent the big challenges against wind energy conversion systems (WECS). Besides, the inefficient measuring devices and the environmental impacts (e.g. temperature, humidity, and noise signals) affect the system equipment, leading to increased system uncertainty issues. In addition, the time delay due to the communication channels can make a gap between the transmitted control signal and the WECS that causes instability for the WECS operation. To tackle these issues, this paper proposes an adaptive neuro-fuzzy inference system (ANFIS) as an effective control technique for blade pitch control of the WECS instead of the conventional controllers. However, the ANFIS requires a suitable dataset for training and testing to adjust its membership functions in order to provide effective performance. In this regard, this paper also suggests an effective strategy to prepare a sufficient dataset for training and testing of the ANFIS controller. Specifically, a new optimization algorithm named the mayfly optimization algorithm (MOA) is developed to find the optimal parameters of the proportional integral derivative (PID) controller to find the optimal dataset for training and testing of the ANFIS controller. To demonstrate the advantages of the proposed technique, it is compared with different three algorithms in the literature. Another contribution is that a new time-domain named figure of demerit is established to confirm the minimization of settling time and the maximum overshoot in a simultaneous manner. A lot of test scenarios are performed to confirm the effectiveness and robustness of the proposed ANFIS based technique. The robustness of the proposed method is verified based on the frequency domain conditions that are driven from Hermite–Biehler theorem. The results emphases that the proposed controller provides superior performance against the wind speed fluctuations, load demand variations, system parameters uncertainties, and the time delay of the communication channels.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a new IoT architecture based on utilizing machine learning techniques to suppress cyber-attacks for providing reliable and secure online monitoring for the induction motor status, in which advanced machine learning technique are utilized here to detect cyberattacks and motor status with high accuracy.
Abstract: In recent years, the internet of things (IoT) represents the main core of Industry 4.0 for cyber-physic systems (CPS) in order to improve the industrial environment. Accordingly, the application of IoT and CPS has been expanded in applied electrical systems and machines. However, cybersecurity represents the main challenge of the implementation of IoT against cyber-attacks. In this regard, this paper proposes a new IoT architecture based on utilizing machine learning techniques to suppress cyber-attacks for providing reliable and secure online monitoring for the induction motor status. In particular, advanced machine learning techniques are utilized here to detect cyber-attacks and motor status with high accuracy. The proposed infrastructure validates the motor status via communication channels and the internet connection with economical cost and less effort on connecting various networks. For this purpose, the CONTACT Element platform for IoT is adopted to visualize the processed data based on machine learning techniques through a graphical dashboard. Once the cyber-attacks signal has been detected, the proposed IoT platform based on machine learning will be visualized automatically as fake data on the dashboard of the IoT platform. Different experimental scenarios with data acquisition are carried out to emphasize the performance of the suggested IoT topology. The results confirm that the proposed IoT architecture based on the machine learning technique can effectively visualize all faults of the motor status as well as the cyber-attacks on the networks. Moreover, all faults of the motor status and the fake data, due to the cyber-attacks, are successfully recognized and visualized on the dashboard of the proposed IoT platform with high accuracy and more clarified visualization, thereby contributing to enhancing the decision-making about the motor status. Furthermore, the introduced IoT architecture with Random Forest algorithm provides an effective detection for the faults on motor due to the vibration under industrial conditions with excellent accuracy of 99.03% that is significantly greater than the other machine learning algorithms. Besides, the proposed IoT has low latency to recognize the motor faults and cyber-attacks to present them in the main dashboard of the IoT platform.

58 citations

Journal ArticleDOI
TL;DR: The enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load, are presented and it is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode.
Abstract: Recently, the penetration of energy storage systems and photovoltaics has been significantly expanded worldwide. In this regard, this paper presents the enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load. DC–DC and DC–AC converters are coordinated and controlled to achieve DC voltage stability in the microgrid. To achieve such an ambitious target, the system is widely operated in two different modes: stand-alone and grid-connected modes. The novel control strategy enables maximum power generation from the photovoltaic system across different techniques for operating the microgrid. Six different cases are simulated and analyzed using the MATLAB/Simulink platform while varying irradiance levels and consequently varying photovoltaic generation. The proposed system achieves voltage and power stability at different load demands. It is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode. In general, the proposed battery converter control introduces a stable operation and regulated DC voltage but with few voltage spikes. The merit of the integrated DC microgrid with batteries is to attain further flexibility and reliability through balancing power demand and generation. The simulation results also show the system can operate properly in normal or abnormal cases, thanks to the proposed control strategy, which can regulate the voltage stability of the DC bus in the microgrid with energy storage systems and photovoltaics.

45 citations

Journal ArticleDOI
TL;DR: In this paper , a new intelligent integration between an IoT platform and deep learning neural network (DNN) algorithm for the online monitoring of computer numerical control (CNC) machines is introduced.
Abstract: This paper introduces a new intelligent integration between an IoT platform and deep learning neural network (DNN) algorithm for the online monitoring of computer numerical control (CNC) machines. The proposed infrastructure is utilized for monitoring the cutting process while maintaining the cutting stability of CNC machines in order to ensure effective cutting processes that can help to increase the quality of products. For this purpose, a force sensor is installed in the milling CNC machine center to measure the vibration conditions. Accordingly, an IoT architecture is designed to connect the sensor node and the cloud server to capture the real-time machine’s status via message queue telemetry transport (MQTT) protocol. To classify the different cutting conditions (i.e., stable cutting and unstable cuttings), an improved model of DNN is designed in order to maintain the healthy state of the CNC machine. As a result, the developed deep learning can accurately investigate if the transmitted data of the smart sensor via the internet is real cutting data or fake data caused by cyber-attacks or the inefficient reading of the sensor due to the environment temperature, humidity, and noise signals. The outstanding results are obtained from the proposed approach indicating that deep learning can outperform other traditional machine learning methods for vibration control. The Contact elements for IoT are utilized to display the cutting information on a graphical dashboard and monitor the cutting process in real-time. Experimental verifications are performed to conduct different cutting conditions of slot milling while implementing the proposed deep machine learning and IoT-based monitoring system. Diverse scenarios are presented to verify the effectiveness of the developed system, where it can disconnect immediately to secure the system automatically when detecting the cyber-attack and switch to the backup broker to continue the runtime operation.

43 citations

Journal ArticleDOI
06 Mar 2021
TL;DR: The multi-objective cat swarm optimization (MO-CSO) algorithm was proposed to solve the bi-stages optimization problems for enhancing the distribution system performance and provided satisfactory results for increasing the penetration level of RES in unbalanced distribution networks.
Abstract: The output generations of renewable energy sources (RES) depend basically on climatic conditions, which are the main reason for their uncertain nature. As a result, the performance and security of distribution systems can be significantly worsened with high RES penetration. To address these issues, an analytical study was carried out by considering different penetration strategies for RES in the radial distribution system. Moreover, a bi-stage procedure was proposed for optimal planning of RES penetration. The first stage was concerned with calculating the optimal RES locations and sites. This stage aimed to minimize the voltage variations in the distribution system. In turn, the second stage was concerned with obtaining the optimal setting of the voltage control devices to improve the voltage profile. The multi-objective cat swarm optimization (MO-CSO) algorithm was proposed to solve the bi-stages optimization problems for enhancing the distribution system performance. Furthermore, the impact of the RES penetration level and their uncertainty on a distribution system voltage were studied. The proposed method was tested on the IEEE 34-bus unbalanced distribution test system, which was analyzed using backward/forward sweep power flow for unbalanced radial distribution systems. The proposed method provided satisfactory results for increasing the penetration level of RES in unbalanced distribution networks.

36 citations

Journal ArticleDOI
TL;DR: A new intelligent integration between an IoT platform and deep learning neural network (DNN) algorithm for the online monitoring of computer numerical control (CNC) machines is introduced, indicating that deep learning can outperform other traditional machine learning methods for vibration control.
Abstract: This paper introduces a new intelligent integration between an IoT platform and deep learning neural network (DNN) algorithm for the online monitoring of computer numerical control (CNC) machines. The proposed infrastructure is utilized for monitoring the cutting process while maintaining the cutting stability of CNC machines in order to ensure effective cutting processes that can help to increase the quality of products. For this purpose, a force sensor is installed in the milling CNC machine center to measure the vibration conditions. Accordingly, an IoT architecture is designed to connect the sensor node and the cloud server to capture the real-time machine’s status via message queue telemetry transport (MQTT) protocol. To classify the different cutting conditions (i.e., stable cutting and unstable cuttings), an improved model of DNN is designed in order to maintain the healthy state of the CNC machine. As a result, the developed deep learning can accurately investigate if the transmitted data of the smart sensor via the internet is real cutting data or fake data caused by cyber-attacks or the inefficient reading of the sensor due to the environment temperature, humidity, and noise signals. The outstanding results are obtained from the proposed approach indicating that deep learning can outperform other traditional machine learning methods for vibration control. The Contact elements for IoT are utilized to display the cutting information on a graphical dashboard and monitor the cutting process in real-time. Experimental verifications are performed to conduct different cutting conditions of slot milling while implementing the proposed deep machine learning and IoT-based monitoring system. Diverse scenarios are presented to verify the effectiveness of the developed system, where it can disconnect immediately to secure the system automatically when detecting the cyber-attack and switch to the backup broker to continue the runtime operation.

36 citations

References
More filters
Journal ArticleDOI
TL;DR: A snapshot of particle swarming from the authors’ perspective, including variations in the algorithm, current and ongoing research, applications and open problems, is included.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed The relationships between particle swarm optimization and both artificial life and genetic algorithms are described

18,439 citations

Journal ArticleDOI
01 May 1993
TL;DR: The architecture and learning procedure underlying ANFIS (adaptive-network-based fuzzy inference system) is presented, which is a fuzzy inference System implemented in the framework of adaptive networks.
Abstract: The architecture and learning procedure underlying ANFIS (adaptive-network-based fuzzy inference system) is presented, which is a fuzzy inference system implemented in the framework of adaptive networks. By using a hybrid learning procedure, the proposed ANFIS can construct an input-output mapping based on both human knowledge (in the form of fuzzy if-then rules) and stipulated input-output data pairs. In the simulation, the ANFIS architecture is employed to model nonlinear functions, identify nonlinear components on-line in a control system, and predict a chaotic time series, all yielding remarkable results. Comparisons with artificial neural networks and earlier work on fuzzy modeling are listed and discussed. Other extensions of the proposed ANFIS and promising applications to automatic control and signal processing are also suggested. >

15,085 citations

Journal ArticleDOI
TL;DR: It is shown from two examples that the successive identification method of a fuzzy model is very useful for modeling complex systems.

485 citations

Journal ArticleDOI
TL;DR: In this paper, a sliding mode control strategy is proposed to ensure stability in both operation regions and to impose the ideal feedback control solution despite model uncertainties in variable-speed wind energy conversion systems (VS-WECS).
Abstract: This paper addresses the problem of controlling power generation in variable-speed wind energy conversion systems (VS-WECS). These systems have two operation regions depending on the wind turbine tip-speed ratio. They are distinguished by minimum phase behavior in one of these regions and a nonminimum phase in the other one. A sliding mode control strategy is then proposed to ensure stability in both operation regions and to impose the ideal feedback control solution despite model uncertainties. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine and the generator as well as to electric grid disturbances. The proposed sliding mode control approach has been simulated on a 1.5-MW three-blade wind turbine to evaluate its consistency and performance. The next step was the validation using the National Renewable Energy Laboratory (NREL) wind turbine simulator called the fatigue, aerodynamics, structures, and turbulence code (FAST). Both simulation and validation results show that the proposed control strategy is effective in terms of power regulation. Moreover, the sliding mode approach is arranged so as to produce no chattering in the generated torque that could lead to increased mechanical stress because of strong torque variations.

390 citations

Trending Questions (1)
How can ANFIS be used for pitch control?

ANFIS is used as an effective control technique for blade pitch control of wind energy conversion systems (WECS) instead of conventional controllers.