scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Robust negative impacts of climate change on African agriculture

01 Jan 2010-Environmental Research Letters (IOP Publishing)-Vol. 5, Iss: 1, pp 014010
TL;DR: In this article, the authors show that by combining historical crop production and weather data into a panel analysis, a robust model of yield response to climate change emerges for several key African crops, including maize, sorghum, millet, groundnut, and cassava.
Abstract: There is widespread interest in the impacts of climate change on agriculture in Sub-Saharan Africa (SSA), and on the most effective investments to assist adaptation to these changes, yet the scientific basis for estimating production risks and prioritizing investments has been quite limited. Here we show that by combining historical crop production and weather data into a panel analysis, a robust model of yield response to climate change emerges for several key African crops. By mid-century, the mean estimates of aggregate production changes in SSA under our preferred model specification are − 22, − 17, − 17, − 18, and − 8% for maize, sorghum, millet, groundnut, and cassava, respectively. In all cases except cassava, there is a 95% probability that damages exceed 7%, and a 5% probability that they exceed 27%. Moreover, countries with the highest average yields have the largest projected yield losses, suggesting that well-fertilized modern seed varieties are more susceptible to heat related losses.
Citations
More filters
Journal ArticleDOI
29 Jul 2011-Science
TL;DR: It was found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability.
Abstract: Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.

3,231 citations

Journal ArticleDOI
13 Sep 2013-Science
TL;DR: There is more agreement across studies regarding the influence of climate on human conflict than has been recognized previously and warmer temperatures or extremes of rainfall can be causally associated with changes in interpersonal violence and in civil war.
Abstract: A rapidly growing body of research examines whether human conflict can be affected by climatic changes. Drawing from archeology, criminology, economics, geography, history, political science, and psychology, we assemble and analyze the 60 most rigorous quantitative studies and document, for the first time, a remarkable convergence of results. We find strong causal evidence linking climatic events to human conflict across a range of spatial and temporal scales and across all major regions of the world. The magnitude of climate's influence is substantial: for each 1 standard deviation (1σ) change in climate toward warmer temperatures or more extreme rainfall, median estimates indicate that the frequency of interpersonal violence rises 4% and the frequency of intergroup conflict rises 14%. Because locations throughout the inhabited world are expected to warm 2-4σ by 2050, amplified rates of human conflict could represent a large and critical impact of anthropogenic climate change.

1,315 citations

Journal ArticleDOI
TL;DR: A rapidly growing body of research applies panel methods to examine how temperature, precipitation, and windstorms influence economic outcomes as mentioned in this paper, including agricultural output, industrial output, labor productivity, energy demand, health, conflict, and economic growth.
Abstract: A rapidly growing body of research applies panel methods to examine how temperature, precipitation, and windstorms influence economic outcomes. These studies focus on changes in weather realizations over time within a given spatial area and demonstrate impacts on agricultural output, industrial output, labor productivity, energy demand, health, conflict, and economic growth, among other outcomes. By harnessing exogenous variation over time within a given spatial unit, these studies help credibly identify (i) the breadth of channels linking weather and the economy, (ii) heterogeneous treatment effects across different types of locations, and (iii) nonlinear effects of weather variables. This paper reviews the new literature with two purposes. First, we summarize recent work, providing a guide to its methodologies, datasets, and findings. Second, we consider applications of the new literature, including insights for the "damage function" within models that seek to assess the potential economic effects of future climate change. ( JEL C51, D72, O13, Q51, Q54)

1,057 citations

Journal ArticleDOI
TL;DR: In this article, an analysis of over 20,000 historical African maize trials suggests the crop will better cope with climate change under rain-fed management, and that optimal rainfed conditions would mean 65% of maize-growing areas in Africa would be likely to experience yield losses, compared with 100% under drought conditions.
Abstract: An analysis of over 20,000 historical African maize trials suggests the crop will better cope with climate change under rain-fed management. For a 1 °C temperature rise, optimal rain-fed conditions would mean 65% of maize-growing areas in Africa would be likely to experience yield losses, compared with 100% under drought conditions.

983 citations

01 Jan 2014
TL;DR: The questions for this chapter are how far climate and its change affect current food production systems and food security and the extent to which they will do so in the future.
Abstract: Many definitions of food security exist, and these have been the subject of much debate. As early as 1992, Maxwell and Smith (1992) reviewed more than 180 items discussing concepts and definitions, and more definitions have been formulated since (DEFRA, 2006). Whereas many earlier definitions centered on food production, more recent definitions highlight access to food, in keeping with the 1996 World Food Summit definition (FAO, 1996) that food security is met when “all people, at all times, have physical and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life.” Worldwide attention on food access was given impetus by the food “price spike” in 2007–2008, triggered by a complex set of long- and short-term factors (FAO, 2009b; von Braun and Torero, 2009). FAO concluded, “provisional estimates show that, in 2007, 75 million more people were added to the total number of undernourished relative to 2003–05” (FAO, 2008); this is arguably a low-end estimate (Headey and Fan, 2010). More than enough food is currently produced per capita to feed the global population, yet about 870 million people remained hungry in the period from 2010 to 2012 (FAO et al., 2012). The questions for this chapter are how far climate and its change affect current food production systems and food security and the extent to which they will do so in the future (Figure 7-1).

960 citations


Cites background from "Robust negative impacts of climate ..."

  • ...…development is the systematic comparison of results from different modeling and experimental approaches for providing insights into model uncertainties as well as to develop risk management (Challinor and Wheeler, 2008; Kang et al., 2009; Schlenker and Lobell, 2010; Rosenzweig et al., 2013, 2014)....

    [...]

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

Book
01 Jan 2007
TL;DR: In this paper, the authors present a cross-chapter case study on climate change and sustainability in natural and managed systems and assess key vulnerabilities and the risk from climate change, and assess adaptation practices, options, constraints and capacity.
Abstract: Foreword Preface Introduction Summary for policymakers Technical summary 1. Assessment of observed changes and responses in natural and managed systems 2. New assessment methodologies and the characterisation of future conditions 3. Fresh water resources and their management 4. Ecosystems, their properties, goods and services 5. Food, fibre and forest products 6. Coastal systems and low-lying areas 7. Industry, settlement and society 8. Human health 9. Africa 10. Asia 11. Australia and New Zealand 12. Europe 13. Latin America 14. North America 15. Polar regions (Arctic and Antarctic) 16. Small islands 17. Assessment of adaptation practices, options, constraints and capacity 18. Inter-relationships between adaptation and mitigation 19. Assessing key vulnerabilities and the risk from climate change 20. Perspectives on climate change and sustainability - 811 Cross-chapter case studies Appendix I. Glossary Appendix II. Contributors to the IPCC WGII Fourth Assessment Report Appendix III. Reviewers of the IPCC WGII Fourth Assessment Report Appendix IV. Acronyms and abbreviations Appendix V. Index and database of regional content Index CD-ROM.

8,465 citations

Journal ArticleDOI
TL;DR: In this paper, a database of monthly climate observations from meteorological stations is constructed and checked for inhomogeneities in the station records using an automated method that refines previous methods by using incomplete and partially overlapping records and by detecting inhomalities with opposite signs in different seasons.
Abstract: A database of monthly climate observations from meteorological stations is constructed. The database includes six climate elements and extends over the global land surface. The database is checked for inhomogeneities in the station records using an automated method that refines previous methods by using incomplete and partially overlapping records and by detecting inhomogeneities with opposite signs in different seasons. The method includes the development of reference series using neighbouring stations. Information from different sources about a single station may be combined, even without an overlapping period, using a reference series. Thus, a longer station record may be obtained and fragmentation of records reduced. The reference series also enables 1961–90 normals to be calculated for a larger proportion of stations. The station anomalies are interpolated onto a 0.5° grid covering the global land surface (excluding Antarctica) and combined with a published normal from 1961–90. Thus, climate grids are constructed for nine climate variables (temperature, diurnal temperature range, daily minimum and maximum temperatures, precipitation, wet-day frequency, frost-day frequency, vapour pressure, and cloud cover) for the period 1901–2002. This dataset is known as CRU TS 2.1 and is publicly available (http://www.cru.uea.ac.uk/). Copyright  2005 Royal Meteorological Society.

4,011 citations


"Robust negative impacts of climate ..." refers result in this paper

  • ...1 dataset for 1961–2002 from the Climatic Research Unit of the University of East Anglia [17] and obtain similar results....

    [...]

  • ...As an alternative to reanalysis data, we also use the monthly observations of the CRU 2.1 dataset for 1961–2002 from the Climatic Research Unit of the University of East Anglia [17] and obtain similar results....

    [...]

01 Jan 2007
TL;DR: Arritt et al. as discussed by the authors presented a survey of the state-of-the-art work in the field of sport psychology, including the following authors: R. Arritt (USA), R. Benestad (Norway), M. Beniston (Switzerland), D.Caya (Canada), J.C. Caya, J.F. Comiso, R.H. Feddema, A.L. Lowe (UK), A.S. Nokhandan (Iran), JC. New (UK, M.
Abstract: Contributing Authors: R. Arritt (USA), R. Benestad (Norway), M. Beniston (Switzerland), D. Bromwich (USA), D. Caya (Canada), J. Comiso (USA), R. de Elía (Canada, Argentina), K. Dethloff (Germany), S. Emori (Japan), J. Feddema (USA), R. Gerdes (Germany), J.F. González-Rouco (Spain), W. Gutowski (USA), I. Hanssen-Bauer (Norway), C. Jones (Canada), R. Katz (USA), A. Kitoh (Japan), R. Knutti (Switzerland), R. Leung (USA ), J. Lowe (UK), A.H. Lynch (Australia), C. Matulla (Canada, Austria), K. McInnes (Australia), A.V. Mescherskaya (Russian Federation), A.B. Mullan (New Zealand), M. New (UK), M.H. Nokhandan (Iran), J.S. Pal (USA, Italy), D. Plummer (Canada), M. Rummukainen (Sweden, Finland), C. Schär (Switzerland), S. Somot (France), D.A. Stone (UK, Canada), R. Suppiah (Australia), M. Tadross (South Africa), C. Tebaldi (USA), W. Tennant (South Africa), M. Widmann (Germany, UK), R. Wilby (UK), B.L. Wyman (USA)

3,044 citations