scispace - formally typeset
Search or ask a question
Book

Robust Power System Frequency Control

03 Mar 2009-
TL;DR: In this article, the authors provide a comprehensive coverage of robust power system frequency control understanding, simulation and design, and develop an appropriate intuition relative to the robust load frequency regulation problem in real-world power systems, rather than to describe sophisticated mathematical analytical methods.
Abstract: Frequency control as a major function of automatic generation control is one of the important control problems in electric power system design and operation, and is becoming more significant today due to the increasing size, changing structure, emerging new uncertainties, environmental constraints, and the complexity of power systems. Robust Power System Frequency Control uses the recent development of linear robust control theory to provide practical, systematic, fast, and flexible algorithms for the tuning of power system load-frequency controllers. The physical constraints and important challenges related to the frequency regulation issue in a deregulated environment are emphasized, and most results are supplemented by real-time simulations. The developed control strategies attempt to bridge the existing gap between the advantages of robust/optimal control and traditional power system frequency control design. The material summarizes the long term research outcomes and contributions of the author’s experience with power system frequency regulation. It provides a thorough understanding of the basic principles of power system frequency behavior over a wide range of operating conditions. It uses simple frequency response models, control structures and mathematical algorithms to adapt modern robust control theorems with frequency control issues as well as conceptual explanations. The engineering aspects of frequency regulation have been considered, and practical methods for computer analysis and design are also discussed. Robust Power System Frequency Control provides a comprehensive coverage of frequency control understanding, simulation and design. The material develops an appropriate intuition relative to the robust load frequency regulation problem in real-world power systems, rather than to describe sophisticated mathematical analytical methods.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a novel approach to conceive the secondary control in droop-controlled microgrids (MGs) is presented, where a distributed networked control system is used in order to implement a distributed secondary control (DSC), thus avoiding its implementation in MGCC.
Abstract: This paper presents a novel approach to conceive the secondary control in droop-controlled microgrids (MGs). The conventional approach is based on restoring the frequency and amplitude deviations produced by the local droop controllers by using an MG central controller (MGCC). A distributed networked control system is used in order to implement a distributed secondary control (DSC), thus avoiding its implementation in MGCC. The proposed approach is not only able to restore frequency and voltage of the MG but also ensures reactive power sharing. The distributed secondary control does not rely on a central control, so that the failure of a single unit will not produce the fail down of the whole system. Experimental results are presented to show the feasibility of the DSC. The time latency and data drop-out limits of the communication systems are studied as well.

928 citations


Cites methods from "Robust Power System Frequency Contr..."

  • ...This concept was used in large utility power systems for decades in order to control the frequency of a large-area electrical network [14], [15], and it has been applied to MGs to restore frequency and voltage deviations [1], [2], [9]–[13]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the fundamentals and main concept of virtual synchronous generators (VSGs) and their role to support the power grid control, and focused on the poetical role of VSGs in the grid frequency regulation task.

601 citations


Additional excerpts

  • ...In a conventional power system, immediately following a power imbalance due to a disturbance, the power is going to be balanced by natural response generators using rotating inertia in the system via the primary frequency control loop [15]....

    [...]

Journal ArticleDOI
TL;DR: This paper addresses a new online intelligent approach by using a combination of the fuzzy logic and the particle swarm optimization (PSO) techniques for optimal tuning of the most popular existing proportional-integral (PI) based frequency controllers in the ac MG systems.
Abstract: Modern power systems require increased intelligence and flexibility in the control and optimization to ensure the capability of maintaining a generation-load balance, following serious disturbances. This issue is becoming more significant today due to the increasing number of microgrids (MGs). The MGs mostly use renewable energies in electrical power production that are varying naturally. These changes and usual uncertainties in power systems cause the classic controllers to be unable to provide a proper performance over a wide range of operating conditions. In response to this challenge, the present paper addresses a new online intelligent approach by using a combination of the fuzzy logic and the particle swarm optimization (PSO) techniques for optimal tuning of the most popular existing proportional-integral (PI) based frequency controllers in the ac MG systems. The control design methodology is examined on an ac MG case study. The performance of the proposed intelligent control synthesis is compared with the pure fuzzy PI and the Ziegler-Nichols PI control design methods.

498 citations


Cites background from "Robust Power System Frequency Contr..."

  • ...As described in [14], [15], frequency stability in a power system means preserving steady frequency following a heavy disturbance with minimum loss in loads and generation units....

    [...]

  • ...Similar to the conventional power systems [15], an ac MG can operate using various control loops which can be mainly classified in four control groups: local, secondary, global, and emergency controls....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an extensive review on control schemes and architectures applied to dc microgrids (MGs) is presented, covering multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms.
Abstract: This paper performs an extensive review on control schemes and architectures applied to dc microgrids (MGs). It covers multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms. Islanding detection, protection, and MG clusters control are also briefly summarized. All the mentioned issues are discussed with the goal of providing control design guidelines for dc MGs. The future research challenges, from the authors’ point of view, are also provided in the final concluding part.

452 citations


Cites background from "Robust Power System Frequency Contr..."

  • ...It is conventionally implemented via a slow, centralized Proportional Integral (PI) controller with lowbandwidth communication (LBC) [69]....

    [...]

Journal ArticleDOI
TL;DR: In this article, an overview of the key issues and new challenges on frequency regulation concerning the integration of renewable energy units into the power systems is presented, followed by a brief survey on the existing challenges and recent developments, the impact of power fluctuation produced by variable renewable sources (such as wind and solar units) on system frequency performance is also presented.
Abstract: As the use of renewable energy sources (RESs) increases worldwide, there is a rising interest on their impacts on power system operation and control. An overview of the key issues and new challenges on frequency regulation concerning the integration of renewable energy units into the power systems is presented. Following a brief survey on the existing challenges and recent developments, the impact of power fluctuation produced by variable renewable sources (such as wind and solar units) on system frequency performance is also presented. An updated LFC model is introduced, and power system frequency response in the presence of RESs and associated issues is analysed. The need for the revising of frequency performance standards is emphasised. Finally, non-linear time-domain simulations on the standard 39-bus and 24-bus test systems show that the simulated results agree with those predicted analytically.

432 citations

References
More filters
Book
30 Apr 1980
TL;DR: In this paper, the authors present a mathematical model of the Synchronous Machine and the effect of speed and acceleration on the stability of a three-phase power system with constant impedance load.
Abstract: Preface.Part I: Introduction.Chapter 1: Power System Stability.Chapter 2: The Elementary Mathematical Model.Chapter 3: System Response to Small Disturbances.Part II: The Electromagnetic Torque.Chapter 4: The Synchronous Machine.Chapter 5: The Simulation of Synchronous Machines.Chapter 6: Linear Models of the Synchronous Machine.Chapter 7: Excitation Systems.Chapter 8: Effect of Excitation on Stability.Chapter 9: Multimachine Systems with Constant Impedance Loads.Part III: The Mechanical Torque Power System Control and Stability.Chapter 10: Speed Governing.Chapter 11: Steam Turbine Prime Movers.Chapter 12: Hydraulic Turbine Prime Movers.Chapter 13: Combustion Turbine and Combined-Cycle Power Plants.Appendix A: Trigonometric Identities for Three-Phase Systems.Appendix B: Some Computer Methods for Solving Differential Equations.Appendix C: Normalization.Appendix D: Typical System Data.Appendix E: Excitation Control System Definitions.Appendix F: Control System Components.Appendix G: Pressure Control Systems.Appendix H: The Governor Equations.Appendix I: Wave Equations for a Hydraulic Conduit.Appendix J: Hydraulic Servomotors.Index.

3,249 citations

Journal ArticleDOI
TL;DR: In this paper, the continuous and discrete-time H∞ control problems are solved via elementary manipulations on linear matrix inequalities (LMI), and two interesting new features emerge through this approach: solvability conditions valid for both regular and singular problems, and an LMI-based parametrization of all H ∞-suboptimal controllers, including reduced-order controllers.
Abstract: The continuous- and discrete-time H∞ control problems are solved via elementary manipulations on linear matrix inequalities (LMI). Two interesting new features emerge through this approach: solvability conditions valid for both regular and singular problems, and an LMI-based parametrization of all H∞-suboptimal controllers, including reduced-order controllers. The solvability conditions involve Riccati inequalities rather than the usual indefinite Riccati equations. Alternatively, these conditions can be expressed as a system of three LMIs. Efficient convex optimization techniques are available to solve this system. Moreover, its solutions parametrize the set of H∞ controllers and bear important connections with the controller order and the closed-loop Lyapunov functions. Thanks to such connections, the LMI-based characterization of H∞ controllers opens new perspectives for the refinement of H∞ design. Applications to cancellation-free design and controller order reduction are discussed and illustrated by examples.

3,200 citations

Journal ArticleDOI
TL;DR: Power Generation Operation And Control Solution pdf Free April 17th, 2019 Free download Ebook Handbook Textbook User Guide PDF files on the internet quickly and easily And Distribution Third Edition electric Power Engineering Geyser Load Control Timer Isg1201 Operation Manual Using Excess Conduit Hydro generation Power For Bitcoin Mining Electric Power as mentioned in this paper

1,478 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the key issues concerning the integration of distributed generation into electric power systems that are of most interest today and analyze the repercussions in transmission system operation and expansion that result from the connection of large amounts of DG of different energy conversion systems focusing on issues related with impacts in steady state operation.

1,317 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the major conclusions drawn from the presentations and ensuing discussions during the all day session, focusing on the root causes of grid blackouts, together with recommendations based on lessons learned.
Abstract: On August 14, 2003, a cascading outage of transmission and generation facilities in the North American Eastern Interconnection resulted in a blackout of most of New York state as well as parts of Pennsylvania, Ohio, Michigan, and Ontario, Canada. On September 23, 2003, nearly four million customers lost power in eastern Denmark and southern Sweden following a cascading outage that struck Scandinavia. Days later, a cascading outage between Italy and the rest of central Europe left most of Italy in darkness on September 28. These major blackouts are among the worst power system failures in the last few decades. The Power System Stability and Power System Stability Controls Subcommittees of the IEEE PES Power System Dynamic Performance Committee sponsored an all day panel session with experts from around the world. The experts described their recent work on the investigation of grid blackouts. The session offered a unique forum for discussion of possible root causes and necessary steps to reduce the risk of blackouts. This white paper presents the major conclusions drawn from the presentations and ensuing discussions during the all day session, focusing on the root causes of grid blackouts. This paper presents general conclusions drawn by this Committee together with recommendations based on lessons learned.

1,220 citations