scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Robust Vessel Segmentation in Fundus Images

12 Dec 2013-International Journal of Biomedical Imaging (Hindawi Publishing Corporation)-Vol. 2013, pp 154860-154860
TL;DR: A method to reduce calculation time, achieve high accuracy, and increase sensitivity compared to the original Frangi method is presented and a new high resolution fundus database is proposed to compare it to the state-of-the-art algorithms.
Abstract: One of the most common modalities to examine the human eye is the eye-fundus photograph. The evaluation of fundus photographs is carried out by medical experts during time-consuming visual inspection. Our aim is to accelerate this process using computer aided diagnosis. As a first step, it is necessary to segment structures in the images for tissue differentiation. As the eye is the only organ, where the vasculature can be imaged in an in vivo and noninterventional way without using expensive scanners, the vessel tree is one of the most interesting and important structures to analyze. The quality and resolution of fundus images are rapidly increasing. Thus, segmentation methods need to be adapted to the new challenges of high resolutions. In this paper, we present a method to reduce calculation time, achieve high accuracy, and increase sensitivity compared to the original Frangi method. This method contains approaches to avoid potential problems like specular reflexes of thick vessels. The proposed method is evaluated using the STARE and DRIVE databases and we propose a new high resolution fundus database to compare it to the state-of-the-art algorithms. The results show an average accuracy above 94% and low computational needs. This outperforms state-of-the-art methods.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.

1,053 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed Deformable U-Net (DUNet), which exploits the retinal vessels' local features with a U-shape architecture, in an end-to-end manner for retinal vessel segmentation.
Abstract: Automatic segmentation of retinal vessels in fundus images plays an important role in the diagnosis of some diseases such as diabetes and hypertension. In this paper, we propose Deformable U-Net (DUNet), which exploits the retinal vessels’ local features with a U-shape architecture, in an end to end manner for retinal vessel segmentation. Inspired by the recently introduced deformable convolutional networks, we integrate the deformable convolution into the proposed network. The DUNet, with upsampling operators to increase the output resolution, is designed to extract context information and enable precise localization by combining low-level features with high-level ones. Furthermore, DUNet captures the retinal vessels at various shapes and scales by adaptively adjusting the receptive fields according to vessels’ scales and shapes. Public datasets: DRIVE, STARE, CHASE_DB1 and HRF are used to test our models. Detailed comparisons between the proposed network and the deformable neural network, U-Net are provided in our study. Results show that more detailed vessels can be extracted by DUNet and it exhibits state-of-the-art performance for retinal vessel segmentation with a global accuracy of 0.9566/0.9641/0.9610/0.9651 and AUC of 0.9802/0.9832/0.9804/0.9831 on DRIVE, STARE, CHASE_DB1 and HRF respectively. Moreover, to show the generalization ability of the DUNet, we use another two retinal vessel data sets, i.e., WIDE and SYNTHE, to qualitatively and quantitatively analyze and compare with other methods. Extensive cross-training evaluations are used to further assess the extendibility of DUNet. The proposed method has the potential to be applied to the early diagnosis of diseases.

448 citations

Journal ArticleDOI
TL;DR: Results suggest that this method for blood vessel segmentation in fundus images based on a discriminatively trained fully connected conditional random field model is suitable for the task of segmenting elongated structures, a feature that can be exploited to contribute with other medical and biological applications.
Abstract: Goal: In this work, we present an extensive description and evaluation of our method for blood vessel segmentation in fundus images based on a discriminatively trained fully connected conditional random field model. Methods: Standard segmentation priors such as a Potts model or total variation usually fail when dealing with thin and elongated structures. We overcome this difficulty by using a conditional random field model with more expressive potentials, taking advantage of recent results enabling inference of fully connected models almost in real time. Parameters of the method are learned automatically using a structured output support vector machine, a supervised technique widely used for structured prediction in a number of machine learning applications. Results: Our method, trained with state of the art features, is evaluated both quantitatively and qualitatively on four publicly available datasets: DRIVE, STARE, CHASEDB1, and HRF. Additionally, a quantitative comparison with respect to other strategies is included. Conclusion: The experimental results show that this approach outperforms other techniques when evaluated in terms of sensitivity, F1-score, G-mean, and Matthews correlation coefficient. Additionally, it was observed that the fully connected model is able to better distinguish the desired structures than the local neighborhood-based approach. Significance: Results suggest that this method is suitable for the task of segmenting elongated structures, a feature that can be exploited to contribute with other medical and biological applications.

429 citations


Cites methods from "Robust Vessel Segmentation in Fundu..."

  • ...To the best of our knowledge, only unsupervised methods were previously tested on HRF [24], [55]....

    [...]

Journal ArticleDOI
TL;DR: A new segment-level loss which emphasizes more on the thickness consistency of thin vessels in the training process is proposed which can bring consistent performance improvement for both deep and shallow network architectures.
Abstract: Objective: Deep learning based methods for retinal vessel segmentation are usually trained based on pixel-wise losses, which treat all vessel pixels with equal importance in pixel-to-pixel matching between a predicted probability map and the corresponding manually annotated segmentation. However, due to the highly imbalanced pixel ratio between thick and thin vessels in fundus images, a pixel-wise loss would limit deep learning models to learn features for accurate segmentation of thin vessels, which is an important task for clinical diagnosis of eye-related diseases. Methods: In this paper, we propose a new segment-level loss which emphasizes more on the thickness consistency of thin vessels in the training process. By jointly adopting both the segment-level and the pixel-wise losses, the importance between thick and thin vessels in the loss calculation would be more balanced. As a result, more effective features can be learned for vessel segmentation without increasing the overall model complexity. Results: Experimental results on public data sets demonstrate that the model trained by the joint losses outperforms the current state-of-the-art methods in both separate-training and cross-training evaluations. Conclusion: Compared to the pixel-wise loss, utilizing the proposed joint-loss framework is able to learn more distinguishable features for vessel segmentation. In addition, the segment-level loss can bring consistent performance improvement for both deep and shallow network architectures. Significance: The findings from this study of using joint losses can be applied to other deep learning models for performance improvement without significantly changing the network architectures.

317 citations


Cites methods from "Robust Vessel Segmentation in Fundu..."

  • ...Four public datasets DRIVE [23], STARE [38], CHASE_ DB1 [39] and HRF [40] are used to evaluate the proposed...

    [...]

  • ...Finally, we apply the jointloss deep learning framework on the high-resolution fundus dataset HRF. Exemplar results1 are shown in the following sections....

    [...]

  • ...Four public datasets DRIVE [23], STARE [38], CHASE_ DB1 [39] and HRF [40] are used to evaluate the proposed segment-level loss and the joint-loss framework....

    [...]

  • ...HRF contains 15 images of healthy patients, 15 images of patients with diabetic retinopathy and 15 images of glaucomatous patients with a 60° FOV and all images have the same resolution of 3504 × 2336 pixels....

    [...]

  • ...After the data augmentation process, the numbers of training patches for the datasets DRIVE, STARE, CHASE_DB1, and HRF are 7869, 8677, 4789 and 4717 respectively....

    [...]

Journal ArticleDOI
TL;DR: The proposed algorithm is less dependent on training data, requires less segmentation time and achieves consistent vessel segmentation accuracy on normal images as well as images with pathology when compared to existing supervised segmentation methods.
Abstract: This paper presents a novel three-stage blood vessel segmentation algorithm using fundus photographs. In the first stage, the green plane of a fundus image is preprocessed to extract a binary image after high-pass filtering, and another binary image from the morphologically reconstructed enhanced image for the vessel regions. Next, the regions common to both the binary images are extracted as the major vessels . In the second stage, all remaining pixels in the two binary images are classified using a Gaussian mixture model (GMM) classifier using a set of eight features that are extracted based on pixel neighborhood and first and second-order gradient images. In the third postprocessing stage, the major portions of the blood vessels are combined with the classified vessel pixels. The proposed algorithm is less dependent on training data, requires less segmentation time and achieves consistent vessel segmentation accuracy on normal images as well as images with pathology when compared to existing supervised segmentation methods. The proposed algorithm achieves a vessel segmentation accuracy of 95.2%, 95.15%, and 95.3% in an average of 3.1, 6.7, and 11.7 s on three public datasets DRIVE, STARE, and CHASE_DB1, respectively.

280 citations


Cites background or methods from "Robust Vessel Segmentation in Fundu..."

  • ...For images from DRIVE and STARE and CHASE_DB1 datasets, “p = 0.2,” which ensures the red regions to be highlighted in the vessel enhanced binary images....

    [...]

  • ...However, increasing the segmentation accuracy above 92% for abnormal retinal images with bright lesions (exudates and cotton wool spots), or red lesions (hemorrhages and microaneurysms), or variations in retinal illumination and contrast, while maintaining low computational complexity is a…...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: There is a natural uncertainty principle between detection and localization performance, which are the two main goals, and with this principle a single operator shape is derived which is optimal at any scale.
Abstract: This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for these criteria as functionals on the operator impulse response. A third criterion is then added to ensure that the detector has only one response to a single edge. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussian-smoothed image. We extend this simple detector using operators of several widths to cope with different signal-to-noise ratios in the image. We present a general method, called feature synthesis, for the fine-to-coarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function is extended along the edge.

28,073 citations


"Robust Vessel Segmentation in Fundu..." refers methods in this paper

  • ...After the vessel enhancement is completed in each resolution level and the results are resized to original resolution, all of themare binarized by a thresholding algorithm proposed by Canny [31]....

    [...]

Journal ArticleDOI
TL;DR: This work uses snakes for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest, and uses scale-space continuation to enlarge the capture region surrounding a feature.
Abstract: A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.

18,095 citations


"Robust Vessel Segmentation in Fundu..." refers background in this paper

  • ...The most known and commonly used ones are active contour-based methods, level-sets, and the socalled snakes [19]....

    [...]

Proceedings ArticleDOI
04 Jan 1998
TL;DR: In contrast with filters that operate on the three bands of a color image separately, a bilateral filter can enforce the perceptual metric underlying the CIE-Lab color space, and smooth colors and preserve edges in a way that is tuned to human perception.
Abstract: Bilateral filtering smooths images while preserving edges, by means of a nonlinear combination of nearby image values. The method is noniterative, local, and simple. It combines gray levels or colors based on both their geometric closeness and their photometric similarity, and prefers near values to distant values in both domain and range. In contrast with filters that operate on the three bands of a color image separately, a bilateral filter can enforce the perceptual metric underlying the CIE-Lab color space, and smooth colors and preserve edges in a way that is tuned to human perception. Also, in contrast with standard filtering, bilateral filtering produces no phantom colors along edges in color images, and reduces phantom colors where they appear in the original image.

8,738 citations


"Robust Vessel Segmentation in Fundu..." refers methods in this paper

  • ...Histogram stretching [28] and bilateral filtering [29] are applied to the green channel....

    [...]

Book ChapterDOI
11 Oct 1998
TL;DR: The multiscale second order local structure of an image (Hessian) is examined with the purpose of developing a vessel enhancement filter and a vesselness measure is obtained.
Abstract: The multiscale second order local structure of an image (Hessian) is examined with the purpose of developing a vessel enhancement filter. A vesselness measure is obtained on the basis of all eigenvalues of the Hessian. This measure is tested on two dimensional DSA and three dimensional aortoiliac and cerebral MRA data. Its clinical utility is shown by the simultaneous noise and background suppression and vessel enhancement in maximum intensity projections and volumetric displays.

3,928 citations


"Robust Vessel Segmentation in Fundu..." refers background or methods in this paper

  • ...Therefore, we optimized the parameters of both—the proposed and the Frangi—methods....

    [...]

  • ...[1] as a base for our own work, because it features some attractive properties....

    [...]

  • ...After that the vessel enhancement method is described to highlight the main differences to the Frangimethod....

    [...]

  • ...[1] in combination with a multiresolution framework to decrease the computational needs and to increase the sensitivity by using a hysteresis thresholding....

    [...]

  • ...[1] proposed, the method calculates the Hessian matrix and the given measures for increasing neighborhood sizes, until the neighborhood is bigger than the expected thickest vessel....

    [...]

Journal ArticleDOI
TL;DR: A method is presented for automated segmentation of vessels in two-dimensional color images of the retina based on extraction of image ridges, which coincide approximately with vessel centerlines, which is compared with two recently published rule-based methods.
Abstract: A method is presented for automated segmentation of vessels in two-dimensional color images of the retina. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. The system is based on extraction of image ridges, which coincide approximately with vessel centerlines. The ridges are used to compose primitives in the form of line elements. With the line elements an image is partitioned into patches by assigning each image pixel to the closest line element. Every line element constitutes a local coordinate frame for its corresponding patch. For every pixel, feature vectors are computed that make use of properties of the patches and the line elements. The feature vectors are classified using a kNN-classifier and sequential forward feature selection. The algorithm was tested on a database consisting of 40 manually labeled images. The method achieves an area under the receiver operating characteristic curve of 0.952. The method is compared with two recently published rule-based methods of Hoover et al. and Jiang et al. . The results show that our method is significantly better than the two rule-based methods (p<0.01). The accuracy of our method is 0.944 versus 0.947 for a second observer.

3,416 citations