scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases.

TL;DR: The direct and indirect involvement of deficiency and/or modification of catalase in the pathogenesis of some important diseases such as diabetes mellitus, Alzheimer's disease, Parkinson’s disease, vitiligo, and acatalasemia is described.
Abstract: Reactive species produced in the cell during normal cellular metabolism can chemically react with cellular biomolecules such as nucleic acids, proteins, and lipids, thereby causing their oxidative modifications leading to alterations in their compositions and potential damage to their cellular activities. Fortunately, cells have evolved several antioxidant defense mechanisms (as metabolites, vitamins, and enzymes) to neutralize or mitigate the harmful effect of reactive species and/or their byproducts. Any perturbation in the balance in the level of antioxidants and the reactive species results in a physiological condition called "oxidative stress." A catalase is one of the crucial antioxidant enzymes that mitigates oxidative stress to a considerable extent by destroying cellular hydrogen peroxide to produce water and oxygen. Deficiency or malfunction of catalase is postulated to be related to the pathogenesis of many age-associated degenerative diseases like diabetes mellitus, hypertension, anemia, vitiligo, Alzheimer's disease, Parkinson's disease, bipolar disorder, cancer, and schizophrenia. Therefore, efforts are being undertaken in many laboratories to explore its use as a potential drug for the treatment of such diseases. This paper describes the direct and indirect involvement of deficiency and/or modification of catalase in the pathogenesis of some important diseases such as diabetes mellitus, Alzheimer's disease, Parkinson's disease, vitiligo, and acatalasemia. Details on the efforts exploring the potential treatment of these diseases using a catalase as a protein therapeutic agent have also been described.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Targeting changes in reactive oxygen species and proinflammatory signaling with suitable antioxidants could be an effective strategy to treat major depressive disorder.

189 citations

Journal ArticleDOI
TL;DR: A scenario is depicted where the regulation of catalase through PTMs, especially S-nitrosation and persulfidation, is highlighted and peroxisomes is assigned a crucial statement in the signaling crossroads among relevant molecules (NO and H2S), since catal enzyme is allocated in these organelles.
Abstract: Catalase is a powerful antioxidant metalloenzyme located in peroxisomes which also plays a central role in signaling processes under physiological and adverse situations. Whereas animals contain a single catalase gene, in plants this enzyme is encoded by a multigene family providing multiple isoenzymes whose number varies depending on the species, and their expression is regulated according to their tissue/organ distribution and the environmental conditions. This enzyme can be modulated by reactive oxygen and nitrogen species (ROS/RNS) as well as by hydrogen sulfide (H2S). Catalase is the major protein undergoing Tyr-nitration [post-translational modification (PTM) promoted by RNS] during fruit ripening, but the enzyme from diverse sources is also susceptible to undergo other activity-modifying PTMs. Data on S-nitrosation and persulfidation of catalase from different plant origins are given and compared here with results from obese children where S-nitrosation of catalase occurs. The cysteine residues prone to be S-nitrosated in catalase from plants and from bovine liver have been identified. These evidences assign to peroxisomes a crucial statement in the signaling crossroads among relevant molecules (NO and H2S), since catalase is allocated in these organelles. This review depicts a scenario where the regulation of catalase through PTMs, especially S-nitrosation and persulfidation, is highlighted.

113 citations

Journal ArticleDOI
TL;DR: The extent to which the different longevity models exhibit the healthful aging features through physiological protective mechanisms related to exercise tolerance and increased β-adrenergic signaling and also protection against diabetes and other metabolic diseases, obesity, cancer, neurological diseases, aging-induced cardiomyopathy, cardiac stress and osteoporosis is discussed.

90 citations

Journal ArticleDOI
TL;DR: This study uses polarographic measurement of oxygen concentration in cellular suspensions to show that H2O2 addition results in O2 release as expected from catalase reaction, and illustrates the potency of intracellular antioxidant (H 2O2) defense.
Abstract: Addition of hydrogen peroxide (H2O2) is a method commonly used to trigger cellular oxidative stress. However, the doses used (often hundreds of micromolar) are disproportionally high with regard to physiological oxygen concentration (low micromolar). In this study using polarographic measurement of oxygen concentration in cellular suspensions we show that H2O2 addition results in O2 release as expected from catalase reaction. This reaction is fast enough to, within seconds, decrease drastically H2O2 concentration and to annihilate it within a few minutes. Firstly, this is likely to explain why recording of oxidative damage requires the high concentrations found in the literature. Secondly, it illustrates the potency of intracellular antioxidant (H2O2) defense. Thirdly, it complicates the interpretation of experiments as subsequent observations might result from high/transient H2O2 exposure and/or from the diverse possible consequences of the O2 release.

80 citations

Journal ArticleDOI
TL;DR: This review will enrich the information on the importance of GSH synthesis, metabolism, functions, compartmentation and inter-organ transport, structural conformations and its quantitation via different techniques in the brain through different techniques.
Abstract: Glutathione (GSH) is an important antioxidant found abundantly and synthesized intracellularly in the cytosol in a tightly regulated fashion. It has diverse physiological functions, including protection against reactive oxygen species and nitrogen species, antioxidant defense as well as maintenance of cellular thiol status. The human brain due to the high oxygen consumption is extremely susceptible to the generation of reactive oxygen species. GSH plays a paramount role in brain antioxidant defense, maintaining redox homeostasis. The depletion of brain GSH has also been observed from both autopsies as well as in vivo MRS studies with aging and varied neurological disorders (Alzheimer's disease, Parkinson's disease, etc.). Therefore, GSH enrichment using supplementation is a promising avenue in the therapeutic development for these neurological disorders. This review will enrich the information on the importance of GSH synthesis, metabolism, functions, compartmentation and inter-organ transport, structural conformations and its quantitation via different techniques. The transportation of GSH in the brain via different interventional routes and its potential role in the development of therapeutic strategies for various brain disorders is also addressed. Very recent study found significant improvement of behavioral deficits including cognitive decline, depressive-like behaviors, in APP (NL-G-F/NL-G-FG-) mice due to oral GSH administration. This animal model study put an emergent need to complete GSH supplementation trial in MCI and AD patients for cognitive improvement as proposed earlier.

66 citations

References
More filters
Journal ArticleDOI
TL;DR: The Kyoto Encyclopedia of Genes and Genomes (KEGG) as discussed by the authors is a knowledge base for systematic analysis of gene functions in terms of the networks of genes and molecules.
Abstract: Kyoto Encyclopedia of Genes and Genomes (KEGG) is a knowledge base for systematic analysis of gene functions in terms of the networks of genes and molecules. The major component of KEGG is the PATHWAY database that consists of graphical diagrams of biochemical pathways including most of the known metabolic pathways and some of the known regulatory pathways. The pathway information is also represented by the ortholog group tables summarizing orthologous and paralogous gene groups among different organisms. KEGG maintains the GENES database for the gene catalogs of all organisms with complete genomes and selected organisms with partial genomes, which are continuously re-annotated, as well as the LIGAND database for chemical compounds and enzymes. Each gene catalog is associated with the graphical genome map for chromosomal locations that is represented by Java applet. In addition to the data collection efforts, KEGG develops and provides various computational tools, such as for reconstructing biochemical pathways from the complete genome sequence and for predicting gene regulatory networks from the gene expression profiles. The KEGG databases are daily updated and made freely available (http://www.genome.ad.jp/kegg/).

24,024 citations

Journal ArticleDOI
Minoru Kanehisa1, Miho Furumichi1, Mao Tanabe1, Yoko Sato2, Kanae Morishima1 
TL;DR: The content has been expanded and the quality improved irrespective of whether or not the KOs appear in the three molecular network databases, and the newly introduced addendum category of the GENES database is a collection of individual proteins whose functions are experimentally characterized and from which an increasing number of KOs are defined.
Abstract: KEGG (http://www.kegg.jp/ or http://www.genome.jp/kegg/) is an encyclopedia of genes and genomes. Assigning functional meanings to genes and genomes both at the molecular and higher levels is the primary objective of the KEGG database project. Molecular-level functions are stored in the KO (KEGG Orthology) database, where each KO is defined as a functional ortholog of genes and proteins. Higher-level functions are represented by networks of molecular interactions, reactions and relations in the forms of KEGG pathway maps, BRITE hierarchies and KEGG modules. In the past the KO database was developed for the purpose of defining nodes of molecular networks, but now the content has been expanded and the quality improved irrespective of whether or not the KOs appear in the three molecular network databases. The newly introduced addendum category of the GENES database is a collection of individual proteins whose functions are experimentally characterized and from which an increasing number of KOs are defined. Furthermore, the DISEASE and DRUG databases have been improved by systematic analysis of drug labels for better integration of diseases and drugs with the KEGG molecular networks. KEGG is moving towards becoming a comprehensive knowledge base for both functional interpretation and practical application of genomic information.

5,741 citations

Journal ArticleDOI
TL;DR: In the latest version 10.5 of STRING, the biggest changes are concerned with data dissemination: the web frontend has been completely redesigned to reduce dependency on outdated browser technologies, and the database can now also be queried from inside the popular Cytoscape software framework.
Abstract: A system-wide understanding of cellular function requires knowledge of all functional interactions between the expressed proteins. The STRING database aims to collect and integrate this information, by consolidating known and predicted protein-protein association data for a large number of organisms. The associations in STRING include direct (physical) interactions, as well as indirect (functional) interactions, as long as both are specific and biologically meaningful. Apart from collecting and reassessing available experimental data on protein-protein interactions, and importing known pathways and protein complexes from curated databases, interaction predictions are derived from the following sources: (i) systematic co-expression analysis, (ii) detection of shared selective signals across genomes, (iii) automated text-mining of the scientific literature and (iv) computational transfer of interaction knowledge between organisms based on gene orthology. In the latest version 10.5 of STRING, the biggest changes are concerned with data dissemination: the web frontend has been completely redesigned to reduce dependency on outdated browser technologies, and the database can now also be queried from inside the popular Cytoscape software framework. Further improvements include automated background analysis of user inputs for functional enrichments, and streamlined download options. The STRING resource is available online, at http://string-db.org/.

5,569 citations


"Role of Catalase in Oxidative Stres..." refers background in this paper

  • ...The interaction of catalase with other antioxidants and proteins can be predicted by the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis [4, 5]....

    [...]

Journal ArticleDOI
TL;DR: A purified protein derived from the twisted beta-pleated sheet fibrils in cerebrovascular amyloidosis associated with Alzheimer's disease has been isolated and Amino acid sequence analysis and a computer search reveals this protein to have no homology with any protein sequenced thus far.

4,795 citations


"Role of Catalase in Oxidative Stres..." refers background in this paper

  • ...Alzheimer’s disease is characterized by deposition of senile plaques of amyloid β peptides in the brain [94, 95]....

    [...]

Trending Questions (2)
What are the potential benefits of using catalase in the breaking down of hydrogen peroxide for health purposes?

The potential benefits of using catalase in breaking down hydrogen peroxide for health purposes include mitigating oxidative stress and potentially treating age-associated degenerative diseases such as diabetes mellitus, Alzheimer's disease, Parkinson's disease, vitiligo, and acatalasemia.

How does the catalase enzyme relate to Parkinson's disease?

The paper mentions that oxidative stress, mitochondrial dysfunction, and environmental toxins are involved in the pathogenesis of Parkinson's disease, but it does not specifically discuss the relationship between the catalase enzyme and Parkinson's disease.