scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Role of microorganisms in adaptation of agriculture crops to abiotic stresses

01 May 2011-World Journal of Microbiology & Biotechnology (Springer Netherlands)-Vol. 27, Iss: 5, pp 1231-1240
TL;DR: In this article, the authors exploit the properties of microorganisms such as their unique properties of tolerance to extremities, their ubiquity, genetic diversity, their interaction with crop plants and develop methods for their successful deployment in agriculture production.
Abstract: Increased incidences of abiotic and biotic stresses impacting productivity in principal crops are being witnessed all over the world. Extreme events like prolonged droughts, intense rains and flooding, heat waves and frost damages are likely to further increase in future due to climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome abiotic stresses to some extent. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for the management of abiotic stress, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we can exploit their unique properties of tolerance to extremities, their ubiquity, genetic diversity, their interaction with crop plants and develop methods for their successful deployment in agriculture production. Besides influencing the physico-chemical properties of rhizospheric soil through production of exopolysaccharides and formation of biofilm, microorganisms can also influence higher plants response to abiotic stresses like drought, chilling injury, salinity, metal toxicity and high temperature, through different mechanisms like induction of osmo-protectants and heat shock proteins etc. in plant cells. Use of these microorganisms per se can alleviate stresses in crop plants thus opening a new and emerging application in agriculture. These microbes also provide excellent models for understanding the stress tolerance, adaptation and response mechanisms that can be subsequently engineered into crop plants to cope with climate change induced stresses.
Citations
More filters
Journal ArticleDOI
TL;DR: There is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis.

1,650 citations


Cites background from "Role of microorganisms in adaptatio..."

  • ...have been reported to provide tolerance to host plants under different abiotic stress environments (Grover et al., 2011)....

    [...]

  • ...…including Rhizobium, Bacillus, Pseudomonas, Pantoea, Paenibacillus, Burkholderia, Achromobacter, Azospirillum, Microbacterium, Methylobacterium, Variovorax, Enterobacter etc. have been reported to provide tolerance to host plants under different abiotic stress environments (Grover et al., 2011)....

    [...]

Journal ArticleDOI
TL;DR: This review aims to characterize the interaction between biotic and abiotic stress responses at a molecular level, focusing on regulatory mechanisms important to both pathways.
Abstract: Plant responses to different stresses are highly complex and involve changes at the transcriptome, cellular, and physiological levels. Recent evidence shows that plants respond to multiple stresses differently from how they do to individual stresses, activating a specific programme of gene expression relating to the exact environmental conditions encountered. Rather than being additive, the presence of an abiotic stress can have the effect of reducing or enhancing susceptibility to a biotic pest or pathogen, and vice versa. This interaction between biotic and abiotic stresses is orchestrated by hormone signalling pathways that may induce or antagonize one another, in particular that of abscisic acid. Specificity in multiple stress responses is further controlled by a range of molecular mechanisms that act together in a complex regulatory network. Transcription factors, kinase cascades, and reactive oxygen species are key components of this cross-talk, as are heat shock factors and small RNAs. This review aims to characterize the interaction between biotic and abiotic stress responses at a molecular level, focusing on regulatory mechanisms important to both pathways. Identifying master regulators that connect both biotic and abiotic stress response pathways is fundamental in providing opportunities for developing broad-spectrum stress-tolerant crop plants.

1,471 citations


Cites background from "Role of microorganisms in adaptatio..."

  • ...The employment of such microbes may provide an alternative strategy to genetic engineering and plant breeding for delivering swift but effective increases in crop stress tolerance (Xu et al., 2008; Grover et al., 2011)....

    [...]

  • ...Now many types of bacteria and arbuscular mycorrhizal fungi are known to enhance stress tolerance in a range of crop species, by producing antioxidants, suppressing ethylene production, stabilizing soil structure, increasing osmolyte production, and improving abscisic acid (ABA) regulation, amongst others (Alami et al., 2000; Saravanakumar and Samiyappan, 2007; Aroca et al., 2008; Kohler et al., 2008; Grover et al., 2011)....

    [...]

  • ...…producing antioxidants, suppressing ethylene production, stabilizing soil structure, increasing osmolyte production, and improving abscisic acid (ABA) regulation, amongst others (Alami et al., 2000; Saravanakumar and Samiyappan, 2007; Aroca et al., 2008; Kohler et al., 2008; Grover et al., 2011)....

    [...]

Journal ArticleDOI
TL;DR: The role of PGPR in helping plants to cope with drought stress is elaborate and physical and chemical changes induced by microorganisms in plants which results in enhanced tolerance to drought stresses are elaborated.

737 citations


Cites background from "Role of microorganisms in adaptatio..."

  • ...These beneficial microorganisms colonize the rhizosphere/ endorhizosphere of plants and promote growth of the plants through various direct and indirect mechanisms (Grover et al. 2011)....

    [...]

Journal ArticleDOI
TL;DR: An overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms is presented, representing a very diverse group of easily accessible beneficial bacteria.
Abstract: Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

706 citations


Cites background from "Role of microorganisms in adaptatio..."

  • ...…to a beneficial and heterogeneous group of microorganisms that can be found in the rhizosphere, on the root surface or associated to it, and are capable of enhancing the growth of plants and protecting them from disease and abiotic stresses (Dimkpa et al., 2009a; Grover et al., 2011; Glick, 2012)....

    [...]

  • ...The plant growth-promoting bacteria (or PGPB) belong to a beneficial and heterogeneous group of microorganisms that can be found in the rhizosphere, on the root surface or associated to it, and are capable of enhancing the growth of plants and protecting them from disease and abiotic stresses (Dimkpa et al., 2009a; Grover et al., 2011; Glick, 2012)....

    [...]

Journal ArticleDOI
TL;DR: Generally, ACC deaminase and IAA-producing bacteria can be a good option for optimal crop production and production of bio-fertilizers in the future due to having multiple potentials in alleviating stresses of salinity, drought, nutrient imbalance, and heavy metals toxicity in plants.

429 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the effectiveness of various binding agents at different stages in the structural organization of aggregates is described and forms the basis of a model which illustrates the architecture of an aggregate.
Abstract: Summary The water-stability of aggregates in many soils is shown to depend on organic materials. The organic binding agents have been classified into (a) transient, mainly polysaccharides, (b), temporary, roots and fungal hyphae, and (c) persistent, resistant aromatic components associated with polyvalent metal cations, and strongly sorbed polymers. The effectiveness of various binding agents at different stages in the structural organization of aggregates is described and forms the basis of a model which illustrates the architecture of an aggregate. Roots and hyphae stabilize macro-aggregates, defined as > 250 μm diameter; consequently, macroaggregation is controlled by soil management (i.e. crop rotations), as management influences the growth of plant roots, and the oxidation of organic carbon. The water-stability of micro-aggregates depends on the persistent organic binding agents and appears to be a characteristic of the soil, independent of management.

5,389 citations


"Role of microorganisms in adaptatio..." refers background in this paper

  • ...Exopolysaccharides possess unique water holding and cementing properties, thus play a vital role in the formation and stabilization of soil aggregates and regulation of nutrients and water flow across plant roots through biofilm formation (Roberson and Firestone 1992; Tisdall and Oadea 1982)....

    [...]

Journal ArticleDOI
TL;DR: This review restricts itself to bacteria that are derived from and exert this effect on the root and generally designated as PGPR (plant-growth-promoting rhizobacteria), which can be direct or indirect in their effects on plant growth.
Abstract: Several microbes promote plant growth, and many microbial products that stimulate plant growth have been marketed. In this review we restrict ourselves to bacteria that are derived from and exert this effect on the root. Such bacteria are generally designated as PGPR (plant-growth-promoting rhizobacteria). The beneficial effects of these rhizobacteria on plant growth can be direct or indirect. This review begins with describing the conditions under which bacteria live in the rhizosphere. To exert their beneficial effects, bacteria usually must colonize the root surface efficiently. Therefore, bacterial traits required for root colonization are subsequently described. Finally, several mechanisms by which microbes can act beneficially on plant growth are described. Examples of direct plant growth promotion that are discussed include (a) biofertilization, (b) stimulation of root growth, (c) rhizoremediation, and (d) plant stress control. Mechanisms of biological control by which rhizobacteria can promote plant growth indirectly, i.e., by reducing the level of disease, include antibiosis, induction of systemic resistance, and competition for nutrients and niches.

3,761 citations

Journal ArticleDOI
TL;DR: Of the compatible solutes tested, sorbitol, mannitol, myo-inositol and proline were effective hydroxyl radical scavengers and Glycinebetaine was ineffective.

1,969 citations


"Role of microorganisms in adaptatio..." refers background in this paper

  • ...It also functions as a protein-compatible hydrotope, and as a hydroxyl radical scavanger (Smirnoff and Cumbes 1989)....

    [...]

Journal ArticleDOI
TL;DR: The Rhizobium-legume (herb or tree) symbiosis is suggested to be the ideal solution to the improvement of soil fertility and the rehabilitation of arid lands and is an important direction for future research.
Abstract: Biological N2 fixation represents the major source of N input in agricultural soils including those in arid regions. The major N2-fixing systems are the symbiotic systems, which can play a significant role in improving the fertility and productivity of low-N soils. The Rhizobium-legume symbioses have received most attention and have been examined extensively. The behavior of some N2-fixing systems under severe environmental conditions such as salt stress, drought stress, acidity, alkalinity, nutrient deficiency, fertilizers, heavy metals, and pesticides is reviewed. These major stress factors suppress the growth and symbiotic characteristics of most rhizobia; however, several strains, distributed among various species of rhizobia, are tolerant to stress effects. Some strains of rhizobia form effective (N2-fixing) symbioses with their host legumes under salt, heat, and acid stresses, and can sometimes do so under the effect of heavy metals. Reclamation and improvement of the fertility of arid lands by application of organic (manure and sewage sludge) and inorganic (synthetic) fertilizers are expensive and can be a source of pollution. The Rhizobium-legume (herb or tree) symbiosis is suggested to be the ideal solution to the improvement of soil fertility and the rehabilitation of arid lands and is an important direction for future research.

1,542 citations


"Role of microorganisms in adaptatio..." refers background in this paper

  • ...Extensive research has been carried out on occurance and functional diversity of agriculturally important microbes in stressed environments as reviewed by several authors (Grahm 1992; Zahran 1999; Venkateswarlu et al. 2008)....

    [...]

  • ...stressed environments as reviewed by several authors (Grahm 1992; Zahran 1999; Venkateswarlu et al. 2008)....

    [...]

Journal ArticleDOI
TL;DR: PGPR might also increase nutrient uptake from soils, thus reducing the need for fertilizers and preventing the accumulation of nitrates and phosphates in agricultural soils, and reduce the effects of water contamination from fertilizer run-off and lead to savings for farmers.

1,504 citations


"Role of microorganisms in adaptatio..." refers background in this paper

  • ...The subject of PGPR elicited tolerance to abiotic stresses has been reviewed recently (Venkateswarlu et al. 2008; Yang et al. 2009)....

    [...]