scispace - formally typeset
Journal ArticleDOI

Role of root derived organic acids in the mobilization of nutrients from the rhizosphere

Reads0
Chats0
TLDR
The role of organic acids in the mobilization of plant nutrients from the rhizosphere was assessed in seven contrasting soil types as mentioned in this paper, and it was concluded that organic acids can be expected to be of little consequence in nutrient mobilization from high pH soils, whilst in acid soils they may be involved both in a more general mechanism for micronutrient uptake or as a potential Al detoxification mechanism.
Abstract
The role of organic acids in the mobilization of plant nutrients from the rhizosphere was assessed in seven contrasting soil types. The results indicated that malate was poor at mobilizing micronutrients from all the test soils, whilst citrate was capable of mobilizing significant quantities. Citrate was also capable of mobilizing P from one soil which possessed a large Ca-P fraction. This mobilization of P was due to both the complexing action of the citrate anion and due to the dissolution properties of the protons released from citric acid upon equilibrium with the soil solution. The reaction of citrate with cations was found to be near instantaneous with significant absorption to the solid phase in some soils at low concentrations. Soil decomposition studies indicated that citrate was rapidly broken down in organic soils but was more resistant to degradation in subsoil horizons. It was concluded that organic acids can be expected to be of little consequence in nutrient mobilization from high pH soils, whilst in acid soils they may be involved both in a more general mechanism for micronutrient uptake or as a potential Al detoxification mechanism.

read more

Citations
More filters
Journal ArticleDOI

Organic acids in the rhizosphere: a critical review

TL;DR: In this article, a review of the role of organic acids in rhizosphere processes is presented, which includes information on organic acid levels in plants (concentrations, compartmentalisation, spatial aspects, synthesis), plant efflux (passive versus active transport, theoretical versus experimental considerations), soil reactions (soil solution concentrations, sorption) and microbial considerations (mineralization).
Journal ArticleDOI

Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review

TL;DR: In this paper, the authors give an overview of those chemical processes that are directly induced by plant roots and which can affect the concentration of P in the soil solution and, ultimately, the bioavailability of soil inorganic P to plants.
Journal ArticleDOI

An efficient microbiological growth medium for screening phosphate solubilizing microorganisms

TL;DR: The results indicated that the criterion for isolation of phosphate solubilizers based on the formation of visible halo/zone on agar plates is not a reliable technique, and soil microbes should be screened in NBRIP broth assay for the identification of the most efficient phosphate soluble inorganic phosphates in liquid medium.
Journal ArticleDOI

Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms

TL;DR: Features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen.
Journal ArticleDOI

Function and mechanism of organic anion exudation from plant roots

TL;DR: The benefits that plants derive from the presence of organic anions in the rhizosphere are described and the potential for biotechnology to increase organic anion exudation is highlighted.
References
More filters
Journal ArticleDOI

A modified single solution method for the determination of phosphate in natural waters

J. Murphy, +1 more
TL;DR: In this article, a single solution reagent was described for the determination of phosphorus in sea water, which consists of an acidified solution of ammonium molybdate containing ascorbic acid and a small amount of antimony.
Book

Critical Stability Constants

TL;DR: Erratum to: Aminocarboxylic Acids to: Iminodiacetic Acid Derivatives to: Peptides to: Aliphatic Amines to: Protonation Values for other Ligands.
Book

Chemical equilibria in soils

TL;DR: In this paper, Chemical equilibria in soils, chemical equilibrium in soil, Chemical equilibrium in soils, مرکز فناوری اطلاعات و اشعر رسانی, ک-شاouرزی
Book

Soil Nutrient Bioavailability: A Mechanistic Approach

TL;DR: In this article, the Mechanistic Uptake Model was used to model the Nutrient UPTake by Plant Roots Growing in Soil and the interaction of plant roots with the soil and environment.
Related Papers (5)