scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Role of the pericyte in wound healing: An ultrastructural study☆

01 Aug 1970-Experimental and Molecular Pathology (Academic Press)-Vol. 13, Iss: 1, pp 51-65
TL;DR: It is proposed that the pericyte-endothelial “contacts” act as a regulatory mechanism for capillary proliferation.
About: This article is published in Experimental and Molecular Pathology.The article was published on 1970-08-01. It has received 213 citations till now. The article focuses on the topics: Pericyte & Wound healing.
Citations
More filters
Journal ArticleDOI
11 Jul 1997-Science
TL;DR: Comparisons made between PDGF null mouse phenotypes suggest a general role for PDGFs in the development of myofibroblasts, and endothelial cells of the sprouting capillaries in the mutant mice appeared to be unable to attract PDGF-Rbeta-positive pericyte progenitor cells.
Abstract: Platelet-derived growth factor (PDGF)-B-deficient mouse embryos were found to lack microvascular pericytes, which normally form part of the capillary wall, and they developed numerous capillary microaneurysms that ruptured at late gestation. Endothelial cells of the sprouting capillaries in the mutant mice appeared to be unable to attract PDGF-Rbeta-positive pericyte progenitor cells. Pericytes may contribute to the mechanical stability of the capillary wall. Comparisons made between PDGF null mouse phenotypes suggest a general role for PDGFs in the development of myofibroblasts.

2,127 citations

Journal ArticleDOI
TL;DR: Although PC deficiency appears to have direct effects on EC number before E 13.5, the subsequent increased VEGF-A levels may further abrogate microvessel architecture, promote vascular permeability, and contribute to formation of the edematous phenotype observed in late gestation PDGF-B and PDGFR-beta knock out embryos.
Abstract: The association of pericytes (PCs) to newly formed blood vessels has been suggested to regulate endothelial cell (EC) proliferation, survival, migration, differentiation, and vascular branching. Here, we addressed these issues using PDGF-B– and PDGF receptor-β (PDGFR-β)–deficient mice as in vivo models of brain angiogenesis in the absence of PCs. Quantitative morphological analysis showed that these mutants have normal microvessel density, length, and number of branch points. However, absence of PCs correlates with endothelial hyperplasia, increased capillary diameter, abnormal EC shape and ultrastructure, changed cellular distribution of certain junctional proteins, and morphological signs of increased transendothelial permeability. Brain endothelial hyperplasia was observed already at embryonic day (E) 11.5 and persisted throughout development. From E 13.5, vascular endothelial growth factor-A (VEGF-A) and other genes responsive to metabolic stress became upregulated, suggesting that the abnormal microvessel architecture has systemic metabolic consequences. VEGF-A upregulation correlated temporally with the occurrence of vascular abnormalities in the placenta and dilation of the heart. Thus, although PC deficiency appears to have direct effects on EC number before E 13.5, the subsequent increased VEGF-A levels may further abrogate microvessel architecture, promote vascular permeability, and contribute to formation of the edematous phenotype observed in late gestation PDGF-B and PDGFR-β knock out embryos.

1,030 citations


Cites background from "Role of the pericyte in wound heali..."

  • ...Morphological studies indicate a negative correlation between the presence of PCs and the proliferation of ECs in experimental and pathological angiogenesis (Cogan et al., 1961; Kuwabara and Cogan, 1963; Crocker et al., 1970; Benjamin et al., 1999)....

    [...]

Journal ArticleDOI
TL;DR: Activation of TGF-beta 1 appears to be mediated by plasmin as the inhibitory effect on cell movement in co- cultures of BAE cells and pericytes is blocked by the inclusion of inhibitors of pl asmin in the culture medium.
Abstract: When a confluent monolayer of bovine aortic endothelial (BAE) cells is wounded with a razor blade, endothelial cells (ECs) spontaneously move into the denuded area. If bovine pericytes or smooth muscle cells (SMCs) are plated into the denuded area at low density, they block the movement of the ECs. This effect is dependent upon the number of cells plated into the wound area and contact between ECs and the plated cells. Antibodies to transforming growth factor-beta 1 (TGF-beta 1) abrogate the inhibition of BAE cell movement by pericytes or SMCs. TGF-beta 1, if added to wounded BAE cell monolayers, also inhibits cell movement. When cultured separately, BAE cells, pericytes, and SMCs each produce an inactive TGF-beta 1-like molecule which is activated in BAE cell-pericyte or BAE cell-SMC co-cultures. The activation appears to be mediated by plasmin as the inhibitory effect on cell movement in co-cultures of BAE cells and pericytes is blocked by the inclusion of inhibitors of plasmin in the culture medium.

930 citations

Journal ArticleDOI
TL;DR: Recent findings that VEGFs secreted by epithelia, including the retinal pigment epithelium (RPE), are likely to mediate paracrine vascular survival signals for adjacent endothelia may explain the pathogenesis of subretinal neovascularisation in AMD.

884 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to describe the various cellular and molecular aspects involved in the skin healing process.
Abstract: Regeneration and tissue repair processes consist of a sequence of molecular and cellular events which occur after the onset of a tissue lesion in order to restore the damaged tissue. The exsudative, proliferative, and extracellular matrix remodeling phases are sequential events that occur through the integration of dynamic processes involving soluble mediators, blood cells, and parenchymal cells. Exsudative phenomena that take place after injury contribute to the development of tissue edema. The proliferative stage seeks to reduce the area of tissue injury by contracting myofibroblasts and fibroplasia. At this stage, angiogenesis and reepithelialization processes can still be observed. Endothelial cells are able to differentiate into mesenchymal components, and this difference appears to be finely orchestrated by a set of signaling proteins that have been studied in the literature. This pathway is known as Hedgehog. The purpose of this review is to describe the various cellular and molecular aspects involved in the skin healing process.

873 citations

References
More filters
Journal ArticleDOI
TL;DR: The stain reported here differs from previous alkaline lead stains in that the chelating agent, citrate, is in sufficient excess to sequester all lead present, and is less likely to contaminate sections.
Abstract: Aqueous solutions of lead salts (1, 2) and saturated solutions of lead hydroxide (1) have been used as stains to enhance the electron-scattering properties of components of biological materials examined in the electron microscope. Saturated solutions of lead hydroxide (1), while staining more intensely than either lead acetate or monobasic lead acetate (l , 2), form insoluble lead carbonate upon exposure to air. The avoidance of such precipitates which contaminate surfaces of sections during staining has been the stimulus for the development of elaborate procedures for exclusion of air or carbon dioxide (3, 4). Several modifications of Watson's lead hydroxide stain (1) have recently appeared (5-7). All utilize relatively high pH (approximately 12) and one contains small amounts of tartrate (6), a relatively weak complexing agent (8), in addition to lead. These modified lead stains are less liable to contaminate the surface of the section with precipitated stain products. The stain reported here differs from previous alkaline lead stains in that the chelating agent, citrate, is in sufficient excess to sequester all lead present. Lead citrate, soluble in high concentrations in basic solutions, is a chelate compound with an apparent association constant (log Ka) between ligand and lead ion of 6.5 (9). Tissue binding sites, presumably organophosphates, and other anionic species present in biological components following fixation, dehydration, and plastic embedding apparently have a greater affinity for this cation than lead citrate inasmuch as cellular and extracellular structures in the section sequester lead from the staining solution. Alkaline lead citrate solutions are less likely to contaminate sections, as no precipitates form when droplets of fresh staining solution are exposed to air for periods of up to 30 minutes. The resultant staining of the sections is of high intensity in sections of Aralditeor Epon-embedded material. Cytoplasmic membranes, ribosomes, glycogen, and nuclear material are stained (Figs. 1 to 3). STAIN SOLUTION: Lead citrate is prepared by

24,137 citations

Journal ArticleDOI
TL;DR: Certain hitherto unobserved details are revealed and some sort of specificity exists, although the factors involved are not yet understood.
Abstract: Heavy metals may be incorporated from solution into tissue sections for electron microscopy The resulting increase in density of the tissue provides greatly enhanced contrast with minimal distortion Relative densities of various structures are found to depend on the heavy metal ions present and on the conditions of staining Certain hitherto unobserved details are revealed and some sort of specificity exists, although the factors involved are not yet understood

4,040 citations

Journal ArticleDOI
TL;DR: A postfixation in osmium tetroxide, even after long periods of storage, developed an image that—notable in the case of glutaraldehyde—was largely indistinguishable from that of tissues fixed under optimal conditions with osmia tetroxides alone.
Abstract: The aldehydes introduced in this paper and the more appropriate concentrations for their general use as fixatives are: 4 to 6.5 per cent glutaraldehyde, 4 per cent glyoxal, 12.5 per cent hydroxyadipaldehyde, 10 per cent crotonaldehyde, 5 per cent pyruvic aldehyde, 10 per cent acetaldehyde, and 5 per cent methacrolein. These were prepared as cacodylate- or phosphate-buffered solutions (0.1 to 0.2 M, pH 6.5 to 7.6) that, with the exception of glutaraldehyde, contained sucrose (0.22 to 0.55 M). After fixation of from 0.5 hour to 24 hours, the blocks were stored in cold (4°C) buffer (0.1 M) plus sucrose (0.22 M). This material was used for enzyme histochemistry, for electron microscopy (both with and without a second fixation with 1 or 2 per cent osmium tetroxide) after Epon embedding, and for the combination of the two techniques. After fixation in aldehyde, membranous differentiations of the cell were not apparent and the nuclear structure differed from that commonly observed with osmium tetroxide. A postfixation in osmium tetroxide, even after long periods of storage, developed an image that—notable in the case of glutaraldehyde—was largely indistinguishable from that of tissues fixed under optimal conditions with osmium tetroxide alone. Aliesterase, acetylcholinesterase, alkaline phosphatase, acid phosphatase, 5-nucleotidase, adenosine triphosphatase, and DPNH and TPNH diaphorase activities were demonstrable histochemically after most of the fixatives. Cytochrome oxidase, succinic dehydrogenase, and glucose-6-phosphatase were retained after hydroxyaldipaldehyde and, to a lesser extent, after glyoxal fixation. The final product of the activity of several of the above-mentioned enzymes was localized in relation to the fine structure. For this purpose the double fixation procedure was used, selecting in each case the appropriate aldehyde.

3,914 citations

Journal ArticleDOI
TL;DR: A technique for staining sections of osmium-fixed, epoxy-embedded tissues for light microscopy using aqueous toluidine blue at pH 11.1 and does not require prior removal of embedding medium, which permits better utilization of the full resolving power of the light microscope.

800 citations

Journal ArticleDOI
TL;DR: The sequence of event suggests that regulation of RNA synthesis is the means by which contact inhibition controls cell division, and therefore DNA synthesis and cell division are controlled.
Abstract: The cells of an established mouse fibroblast line, 3T3, have a high plating efficiency and grow rapidly in sparse culture, but stop growing at a very low saturation density in comparison with other lines, because 3T3 is extremely sensitive to contact inhibition of cell division. After each medium change, however, there occurs in a small fraction of the cells in a saturation density culture a series of changes that results in a single rather synchronized division 30 hours later. This is due to a macromolecular substance in the serum which appears to act by reducing the sensitivity of the cells to contact inhibition. The first recognizable event following the addition of serum to a stationary phase culture is a ten fold increase in the rate of RNA synthesis, occurring within 30 minutes. An increase in the rate of protein synthesis follows several hours later. DNA synthesis does not begin before 12 hours, but by two hours after medium change an appreciable fraction of the cells become committed to eventual DNA synthesis and cell division. The sequence of event suggests that regulation of RNA synthesis is the means by which contact inhibition controls cell division.

766 citations