scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

25 Nov 2004-Nature (Nature Publishing Group)-Vol. 432, Iss: 7016, pp 488-492
TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract: Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Abstract: In the past ten years we have witnessed a revival of, and subsequent rapid expansion in, the research on zinc oxide (ZnO) as a semiconductor. Being initially considered as a substrate for GaN and related alloys, the availability of high-quality large bulk single crystals, the strong luminescence demonstrated in optically pumped lasers and the prospects of gaining control over its electrical conductivity have led a large number of groups to turn their research for electronic and photonic devices to ZnO in its own right. The high electron mobility, high thermal conductivity, wide and direct band gap and large exciton binding energy make ZnO suitable for a wide range of devices, including transparent thin-film transistors, photodetectors, light-emitting diodes and laser diodes that operate in the blue and ultraviolet region of the spectrum. In spite of the recent rapid developments, controlling the electrical conductivity of ZnO has remained a major challenge. While a number of research groups have reported achieving p-type ZnO, there are still problems concerning the reproducibility of the results and the stability of the p-type conductivity. Even the cause of the commonly observed unintentional n-type conductivity in as-grown ZnO is still under debate. One approach to address these issues consists of growing high-quality single crystalline bulk and thin films in which the concentrations of impurities and intrinsic defects are controlled. In this review we discuss the status of ZnO as a semiconductor. We first discuss the growth of bulk and epitaxial films, growth conditions and their influence on the incorporation of native defects and impurities. We then present the theory of doping and native defects in ZnO based on density-functional calculations, discussing the stability and electronic structure of native point defects and impurities and their influence on the electrical conductivity and optical properties of ZnO. We pay special attention to the possible causes of the unintentional n-type conductivity, emphasize the role of impurities, critically review the current status of p-type doping and address possible routes to controlling the electrical conductivity in ZnO. Finally, we discuss band-gap engineering using MgZnO and CdZnO alloys.

3,291 citations

Journal ArticleDOI
TL;DR: A review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches and the performance limits and advantages, when exploited for both digital and analog applications.
Abstract: The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

2,531 citations

Journal ArticleDOI
TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract: Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

2,440 citations

Journal ArticleDOI
31 Jan 2014-ACS Nano
TL;DR: By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.
Abstract: With advances in exfoliation and synthetic techniques, atomically thin films of semiconducting transition metal dichalcogenides have recently been isolated and characterized. Their two-dimensional structure, coupled with a direct band gap in the visible portion of the electromagnetic spectrum, suggests suitability for digital electronics and optoelectronics. Toward that end, several classes of high-performance devices have been reported along with significant progress in understanding their physical properties. Here, we present a review of the architecture, operating principles, and physics of electronic and optoelectronic devices based on ultrathin transition metal dichalcogenide semiconductors. By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.

2,219 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared carbon nanotube, metal nanowire networks, and regular metal grids with the usual transparent conductive oxides for optically transparent electrode applications.
Abstract: Increasing demand for raw materials means that alternatives to indium-tin oxide are desired for optically transparent electrode applications. Carbon nanotube, metal nanowire networks and regular metal grids have been investigated as possible options. In this review, these materials and recently rediscovered graphene are compared with the usual transparent conductive oxides.

1,697 citations

References
More filters
Journal ArticleDOI
23 May 2003-Science

922 citations

BookDOI
01 Jan 2000
TL;DR: In this paper, active-matrix liquid-crystal displays and laser-crystallization for polycrystalline silicon device applications are discussed, as well as large area image sensor arrays and multilayer color detectors.
Abstract: 1 Introduction- 2 Active-Matrix Liquid-Crystal Displays- 3 Laser Crystallization for Polycrystalline Silicon Device Applications- 4 Large Area Image Sensor Arrays- 5 Novel Processing Technology for Macroelectronics- 6 Multijunction Solar Cells and Modules- 7 Multilayer Color Detectors- 8 Thin Film Position Sensitive Detectors: From 1D to 3D Applications- Symbols and Abbreviations

534 citations

Journal ArticleDOI
06 Dec 2001-Nature
TL;DR: In this paper, an active-matrix display with 64 × 64 pixels, each driven by a thin-film transistor with a solution-processed polymer semiconductor, is described.
Abstract: The handling of grey levels by these large displays paves the way for electronic paper. The main advantages of using soluble semiconductive polymers in microelectronic devices are ease of processing1,2,3 and mechanical flexibility4. Here we describe an active-matrix display with 64 × 64 pixels, each driven by a thin-film transistor with a solution-processed polymer semiconductor. In a significant step towards low-cost flexible displays, this polymer-dispersed liquid-crystal arrangement gives a reflective, low-power display with paper-like contrast, which can handle 256 grey levels while being refreshed at video speed.

518 citations


"Room-temperature fabrication of tra..." refers background in this paper

  • ...Examples of active flexible applications include paper displays and wearable computer...

    [...]

Book
17 Apr 2007
TL;DR: In this article, the authors describe the properties of thin-film transistors and their properties, and present a historical perspective (II-VI semiconducting channel materials for TFTs), W. Howard and Mark Brodsky amorphous silicon and polycrystalline silicon TFT, S.J. Fonash device structures, Jerzy Kanicki organic small molecule TFT and Christos D. Dimitrakopoulos organic oligomers.
Abstract: Introduction and device characteristics of thin-film transistors, Michael S. Shur historical perspective (II-VI semiconducting channel materials for TFTs), W. Howard and Mark Brodsky amorphous silicon and polycrystalline silicon TFTs, S.J. Fonash device structures of amorphous silicon, Jerzy Kanicki organic small molecule TFTs, Christos D. Dimitrakopoulos organic oligomers as semiconducting channel materials for TFTs, Francis Garnier solution deposited organic semiconductors for TFTs -molecules to polymers, Zhenan Bao and Howard Katz organic-inorganic hybrid TFTs, Cherie Kagan and David Mitzi integration and deposition of organic semiconductors for TFTs, John Rogers and Ananth Dodabalapur TFTs in active-matrix liquid crystaldisplays, Kouji Susuki and F. Libsch future applications, Richard Friend.

326 citations

Journal ArticleDOI
TL;DR: In this paper, a review of transparent oxide optoelectronic devices based on their efforts focusing on transparent thin-film transistors fabricated from single-crystalline films of InGaO3(ZnO)5 with a natural superlattice structure is presented.

325 citations