scispace - formally typeset
Journal ArticleDOI

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

Reads0
Chats0
TLDR
A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract
Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

read more

Citations
More filters
Journal ArticleDOI

Fundamentals of zinc oxide as a semiconductor

TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Journal ArticleDOI

Electronics based on two-dimensional materials

TL;DR: A review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches and the performance limits and advantages, when exploited for both digital and analog applications.
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

TL;DR: The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Journal ArticleDOI

Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides

TL;DR: By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.
Journal ArticleDOI

Past achievements and future challenges in the development of optically transparent electrodes

TL;DR: In this article, the authors compared carbon nanotube, metal nanowire networks, and regular metal grids with the usual transparent conductive oxides for optically transparent electrode applications.
References
More filters
Journal ArticleDOI

Experimental Generation and Observation of Intrinsic Localized Spin Wave Modes in an Antiferromagnet

TL;DR: By driving with a microwave pulse the lowest frequency antiferromagnetic resonance of the quasi-1D biaxial antifromagnet into an unstable region, intrinsic localized spin waves have been generated and detected in the spin wave gap as discussed by the authors.
Journal ArticleDOI

Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates

TL;DR: In this article, the formation of amorphous silicon thin film transistors (TFTs) on glass and flexible transparent plastic substrates using rf plasma enhanced chemical vapor deposition and a maximum processing temperature of 110°C was described.
Journal ArticleDOI

Long-Lived Amide I Vibrational Modes in Myoglobin

TL;DR: Pump-probe experiments in the infrared measure vibrational relaxation rates, suggesting that the alpha helix in proteins can support nonlinear states of 15 ps characteristic times.
Journal ArticleDOI

Silicon dioxide and the chalcogenide semiconductors; similarities and differences

N.F. Mott
- 01 Jul 1977 - 
TL;DR: In this article, the authors examine current hypotheses about the optical and electrical properties of amorphous chalcogenide semiconductors, and examine whether they can be extended to explain some of the properties of silicon dioxide.
Related Papers (5)