scispace - formally typeset
Open AccessJournal ArticleDOI

Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions

Reads0
Chats0
TLDR
The results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed.
Abstract
Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. Principle component analysis revealed that the composition of root exudates varied at each developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in early time points and decreased through development. In contrast, the cumulative secretion levels of amino acids and phenolics increased over time. The expression in roots of genes involved in biosynthesis and transportation of compounds represented in the root exudates were consistent with patterns of root exudation. Correlation analyses were performed of the in vitro root exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize these compounds at different developmental stages of Arabidopsis grown in natural soils. Pyrosequencing of rhizosphere mRNA revealed strong correlations (p<0.05) between microbial functional genes involved in the metabolism of carbohydrates, amino acids and secondary metabolites with the corresponding compounds released by the roots at particular stages of plant development. In summary, our results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Plant growth-promoting rhizobacteria and root system functioning.

TL;DR: Novel knowledge and gaps on PGPR modes of action and signals are addressed, recent progress on the links between plant morphological and physiological effects induced by PGPR are highlighted, and the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning is shown.
Journal ArticleDOI

The plant microbiome.

TL;DR: High-throughput technologies are revealing interactions between these complex communities and their hosts in unprecedented detail, with significant implications for plant health and productivity.
Journal ArticleDOI

Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?

TL;DR: In this paper, physiological factors of plants that may govern plant-microbe interactions, focusing on root physiology and the role of root exudates, are discussed, and a possible sequence of events governing rhizobiome assembly is elaborated.
Journal ArticleDOI

Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly.

TL;DR: It is shown that pre-programmed developmental processes in plants result in consistent patterns in the chemical composition of root exudates, which provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the Rhizosphere microbiome for beneficial outcomes.
Journal ArticleDOI

Rhizosphere microbiome assemblage is affected by plant development.

TL;DR: It is surmised that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage.
References
More filters
Journal ArticleDOI

A revised medium for rapid growth and bio assays with tobacco tissue cultures

TL;DR: In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provide a basis for understanding how compartment-specific redox dynamics may operate in retrograde signaling and stress 67 acclimation in plants.
Journal ArticleDOI

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Journal ArticleDOI

The KEGG resource for deciphering the genome

TL;DR: A knowledge-based approach for network prediction is developed, which is to predict, given a complete set of genes in the genome, the protein interaction networks that are responsible for various cellular processes.
Related Papers (5)