scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ROSE: Robustness Strategy for Scale-Free Wireless Sensor Networks

01 Oct 2017-IEEE ACM Transactions on Networking (IEEE)-Vol. 25, Iss: 5, pp 2944-2959
TL;DR: ROSE, a novel robustness enhancing algorithm for scale-free WSNs, is proposed, which exploits the position and degree information of nodes to rearrange the edges to resemble an onion-like structure, which has been proven to be robust against malicious attacks.
Abstract: Due to the recent proliferation of cyber-attacks, improving the robustness of wireless sensor networks (WSNs), so that they can withstand node failures has become a critical issue. Scale-free WSNs are important, because they tolerate random attacks very well; however, they can be vulnerable to malicious attacks, which particularly target certain important nodes. To address this shortcoming, this paper first presents a new modeling strategy to generate scale-free network topologies, which considers the constraints in WSNs, such as the communication range and the threshold on the maximum node degree. Then, ROSE, a novel robustness enhancing algorithm for scale-free WSNs, is proposed. Given a scale-free topology, ROSE exploits the position and degree information of nodes to rearrange the edges to resemble an onion-like structure, which has been proven to be robust against malicious attacks. Meanwhile, ROSE keeps the degree of each node in the topology unchanged such that the resulting topology remains scale-free. The extensive experimental results verify that our new modeling strategy indeed generates scale-free network topologies for WSNs, and ROSE can significantly improve the robustness of the network topologies generated by our modeling strategy. Moreover, we compare ROSE with two existing robustness enhancing algorithms, showing that ROSE outperforms both.
Citations
More filters
Journal ArticleDOI
TL;DR: Fog computing extends the cloud services to the edge of network, and makes computation, communication and storage closer to edge devices and end-users, which aims to enhance low-latency, mobility, network bandwidth, security and privacy.

645 citations

Journal ArticleDOI
TL;DR: A four-layer HetIoT architecture consisting of sensing, networking, cloud computing, and applications is proposed, including self-organizing, big data transmission, privacy protection, data integration and processing in large-scale Het IoT.
Abstract: Heterogeneous Internet of Things (HetIoT) is an emerging research field that has strong potential to transform both our understanding of fundamental computer science principles and our future living. HetIoT is being employed in increasing number of areas, such as smart home, smart city, intelligent transportation, environmental monitoring, security systems, and advanced manufacturing. Therefore, relaying on strong application fields, HetIoT will be filled in our life and provide a variety of convenient services for our future. The network architectures of IoT are intrinsically heterogeneous, including wireless sensor network, wireless fidelity network, wireless mesh network, mobile communication network, and vehicular network. In each network unit, smart devices utilize appropriate communication methods to integrate digital information and physical objects, which provide users with new exciting applications and services. However, the complexity of application requirements, the heterogeneity of network architectures and communication technologies impose many challenges in developing robust HetIoT applications. This paper proposes a four-layer HetIoT architecture consisting of sensing, networking, cloud computing, and applications. Then, the state of the art in HetIoT research and applications have been discussed. This paper also suggests several potential solutions to address the challenges facing future HetIoT, including self-organizing, big data transmission, privacy protection, data integration and processing in large-scale HetIoT.

318 citations


Cites background from "ROSE: Robustness Strategy for Scale..."

  • ...The self-organizing capability is essential to promote network robustness and survivability, and it has attracted intense research interests [55]....

    [...]

Journal ArticleDOI
TL;DR: This paper proposes a Robustness Optimization scheme with multi-population Co-evolution for scale-free wireless sensor networKS (ROCKS), and shows that ROCKS roughly doubles the robustness of initial scale- free WSNs, and outperforms two existing algorithms by about 16% when the network size is large.
Abstract: Wireless sensor networks (WSNs) have been the popular targets for cyberattacks these days. One type of network topology for WSNs, the scale-free topology, can effectively withstand random attacks in which the nodes in the topology are randomly selected as targets. However, it is fragile to malicious attacks in which the nodes with high node degrees are selected as targets. Thus, how to improve the robustness of the scale-free topology against malicious attacks becomes a critical issue. To tackle this problem, this paper proposes a Robustness Optimization scheme with multi-population Co-evolution for scale-free wireless sensor networKS (ROCKS) to improve the robustness of the scale-free topology. We build initial scale-free topologies according to the characteristics of WSNs in the real-world environment. Then, we apply our ROCKS with novel crossover operator and mutation operator to optimize the robustness of the scale-free topologies constructed for WSNs. For a scale-free WSNs topology, our proposed algorithm keeps the initial degree of each node unchanged such that the optimized topology remains scale-free. Based on a well-known metric for the robustness against malicious attacks, our experiment results show that ROCKS roughly doubles the robustness of initial scale-free WSNs, and outperforms two existing algorithms by about 16% when the network size is large.

137 citations


Cites background or methods from "ROSE: Robustness Strategy for Scale..."

  • ...while very few nodes (hub nodes) have very large node degrees [12], [13]....

    [...]

  • ...On the other hand, scale-free model is characterized by the power-law distribution of node degrees, and mainly used in modeling homogeneous network topologies [12], [13]....

    [...]

Journal ArticleDOI
TL;DR: A memetic algorithm MA-TOSCA is proposed to help WSNs resist cascading failures via topology optimization, in which the local search operator is designed based on a new network balancing metric “sink-oriented betweenness entropy”.

133 citations

Journal ArticleDOI
TL;DR: R-Sync is presented, a robust time synchronization scheme for IIoT that makes all the nodes get synchronized and gets the better performance in terms of accuracy and energy consumption, compared with three existing time synchronization algorithms TPSN, GPA, STETS.
Abstract: Energy-efficient and robust-time synchronization is crucial for industrial Internet of things (IIoT). Some energy-efficient time synchronization schemes that achieve high accuracy have been proposed recently. However, some unsynchronized nodes namely isolated nodes exist in the schemes. To deal with the problem, this paper presents R-Sync, a robust time synchronization scheme for IIoT. We use a pulling timer to pull isolated nodes into synchronized networks whose initial value is set according to level of spanning tree. Then, another timer is set up to select backbone node and its initial value is related to the distance to parent node. Moreover, we do experiments based on simulation tool NS-2 and testbed based on wireless hardware nodes. The experimental results show that our approach makes all the nodes get synchronized and gets the better performance in terms of accuracy and energy consumption, compared with three existing time synchronization algorithms TPSN, GPA, STETS.

124 citations


Cites background from "ROSE: Robustness Strategy for Scale..."

  • ...The trust service, data processing, and information exchanging are required in the industrial wireless applications [6]–[8]....

    [...]

References
More filters
Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

39,297 citations


"ROSE: Robustness Strategy for Scale..." refers background in this paper

  • ...In complex network theory, small world topology [22] and scale-free topology [14], [15] are two classic models....

    [...]

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

33,771 citations


"ROSE: Robustness Strategy for Scale..." refers background or methods in this paper

  • ...In complex network theory, small world topology [22] and scale-free topology [14], [15] are two classic models....

    [...]

  • ...In order to generate the power-law distribution of node degrees in scale-free networks, Barabási and Albert proposed the so-called the Barabási-Albert (BA) model [14], which applies the following two criteria to achieve a scale-free topology....

    [...]

  • ...In this study, in particular the robustness of one type of network topology, the scale-free topology [14], [15], for WSNs was investigated....

    [...]

Journal ArticleDOI
27 Jul 2000-Nature
TL;DR: It is found that scale-free networks, which include the World-Wide Web, the Internet, social networks and cells, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates.
Abstract: Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network1. Complex communication networks2 display a surprising degree of robustness: although key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these and other complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. Here we demonstrate that error tolerance is not shared by all redundant systems: it is displayed only by a class of inhomogeneously wired networks, called scale-free networks, which include the World-Wide Web3,4,5, the Internet6, social networks7 and cells8. We find that such networks display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates. However, error tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that is, to the selection and removal of a few nodes that play a vital role in maintaining the network's connectivity). Such error tolerance and attack vulnerability are generic properties of communication networks.

7,697 citations

Journal ArticleDOI
TL;DR: This work presents a simple and efficient implementation of Lloyd's k-means clustering algorithm, which it calls the filtering algorithm, and establishes the practical efficiency of the algorithm's running time.
Abstract: In k-means clustering, we are given a set of n data points in d-dimensional space R/sup d/ and an integer k and the problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. A popular heuristic for k-means clustering is Lloyd's (1982) algorithm. We present a simple and efficient implementation of Lloyd's k-means clustering algorithm, which we call the filtering algorithm. This algorithm is easy to implement, requiring a kd-tree as the only major data structure. We establish the practical efficiency of the filtering algorithm in two ways. First, we present a data-sensitive analysis of the algorithm's running time, which shows that the algorithm runs faster as the separation between clusters increases. Second, we present a number of empirical studies both on synthetically generated data and on real data sets from applications in color quantization, data compression, and image segmentation.

5,288 citations

Journal ArticleDOI
TL;DR: This work represents communication/transportation systems as networks and studies their ability to resist failures simulated as the breakdown of a group of nodes of the network chosen at random (chosen accordingly to degree or load).
Abstract: Communication/transportation systems are often subjected to failures and attacks. Here we represent such systems as networks and we study their ability to resist failures (attacks) simulated as the breakdown of a group of nodes of the network chosen at random (chosen accordingly to degree or load). We consider and compare the results for two different network topologies: the Erdos–Renyi random graph and the Barabasi–Albert scale-free network. We also discuss briefly a dynamical model recently proposed to take into account the dynamical redistribution of loads after the initial damage of a single node of the network.

2,352 citations


Additional excerpts

  • ...In this study, we focused on improving the robustness of the network topologies [10], [11] for WSNs....

    [...]