scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Rotating trapped Bose-Einstein condensates

18 May 2009-Reviews of Modern Physics (American Physical Society)-Vol. 81, Iss: 2, pp 647-691
TL;DR: In this paper, the Bogoliubov equation is applied to the formation of a Bose-Einstein condensate in a box and in a harmonic trap, along with the dynamics of small-amplitude perturbations.
Abstract: After reviewing the ideal Bose-Einstein gas in a box and in a harmonic trap, the effect of interactions on the formation of a Bose-Einstein condensate are discussed, along with the dynamics of small-amplitude perturbations (the Bogoliubov equations). When the condensate rotates with angular velocity $\ensuremath{\Omega}$, one or several vortices nucleate, leading to many observable consequences. With more rapid rotation, the vortices form a dense triangular array, and the collective behavior of these vortices has additional experimental implications. For $\ensuremath{\Omega}$ near the radial trap frequency ${\ensuremath{\omega}}_{\ensuremath{\perp}}$, the lowest-Landau-level approximation becomes applicable, providing a simple picture of such rapidly rotating condensates. Eventually, as $\ensuremath{\Omega}\ensuremath{\rightarrow}{\ensuremath{\omega}}_{\ensuremath{\perp}}$, the rotating dilute gas is expected to undergo a quantum phase transition from a superfluid to various highly correlated (nonsuperfluid) states analogous to those familiar from the fractional quantum Hall effect for electrons in a strong perpendicular magnetic field.
Citations
More filters
Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: In this paper, a review of advances in this field is presented and discussed the possibilities offered by this approach to quantum simulation, as well as the possibilities of quantum simulation with ultracold quantum gases.
Abstract: Experiments with ultracold quantum gases provide a platform for creating many-body systems that can be well controlled and whose parameters can be tuned over a wide range. These properties put these systems in an ideal position for simulating problems that are out of reach for classical computers. This review surveys key advances in this field and discusses the possibilities offered by this approach to quantum simulation.

1,914 citations

Journal ArticleDOI
TL;DR: In this article, the physical principles at the basis of this artificial magnetism are presented, and the analysis is generalized to the simulation of non-Abelian gauge potentials and some striking consequences are presented.
Abstract: When a neutral atom moves in a properly designed laser field, its center-of-mass motion may mimic the dynamics of a charged particle in a magnetic field, with the emergence of a Lorentz-like force. In this Colloquium the physical principles at the basis of this artificial (synthetic) magnetism are presented. The corresponding Aharonov-Bohm phase is related to the Berry's phase that emerges when the atom adiabatically follows one of the dressed states of the atom-laser interaction. Some manifestations of artificial magnetism for a cold quantum gas, in particular, in terms of vortex nucleation are discussed. The analysis is then generalized to the simulation of non-Abelian gauge potentials and some striking consequences are presented, such as the emergence of an effective spin-orbit coupling. Both the cases of bulk gases and discrete systems, where atoms are trapped in an optical lattice, are addressed.

1,531 citations


Cites methods from "Rotating trapped Bose-Einstein cond..."

  • ...This has been widely used in the context of quantum gases [see Cooper (2008) and Fetter (2009) for reviews] and it is well suited when the confining potential is rotationally invariant around the z axis....

    [...]

Journal ArticleDOI
TL;DR: Different realized and proposed techniques for creating gauge potentials-both Abelian and non-Abelian-in atomic systems and their implication in the context of quantum simulation are reviewed.
Abstract: Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.

960 citations

Journal ArticleDOI
TL;DR: In this article, the authors mainly review recent results on mathematical theory and numerical methods for Bose-Einstein condensation (BEC), based on the Gross-Pitaevskii equation (GPE).
Abstract: In this paper, we mainly review recent results on mathematical theory and numerical methods for Bose-Einstein condensation (BEC), based on the Gross-Pitaevskii equation (GPE). Starting from the simplest case with one-component BEC of the weakly interacting bosons, we study the reduction of GPE to lower dimensions, the ground states of BEC including the existence and uniqueness as well as nonexistence results, and the dynamics of GPE including dynamical laws, well-posedness of the Cauchy problem as well as the finite time blow-up. To compute the ground state, the gradient flow with discrete normalization (or imaginary time) method is reviewed and various full discretization methods are presented and compared. To simulate the dynamics, both finite difference methods and time splitting spectral methods are reviewed, and their error estimates are briefly outlined. When the GPE has symmetric properties, we show how to simplify the numerical methods. Then we compare two widely used scalings, i.e. physical scaling (commonly used) and semiclassical scaling, for BEC in strong repulsive interaction regime (Thomas-Fermi regime), and discuss semiclassical limits of the GPE. Extensions of these results for one-component BEC are then carried out for rotating BEC by GPE with an angular momentum rotation, dipolar BEC by GPE with long range dipole-dipole interaction, and two-component BEC by coupled GPEs. Finally, as a perspective, we show briefly the mathematical models for spin-1 BEC, Bogoliubov excitation and BEC at finite temperature.

366 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor and a general formula for γ(C) was derived in terms of the spectrum and eigen states of the Hamiltonian over a surface spanning C.
Abstract: A quantal system in an eigenstate, slowly transported round a circuit C by varying parameters R in its Hamiltonian Ĥ(R), will acquire a geometrical phase factor exp{iγ(C)} in addition to the familiar dynamical phase factor. An explicit general formula for γ(C) is derived in terms of the spectrum and eigenstates of Ĥ(R) over a surface spanning C. If C lies near a degeneracy of Ĥ, γ(C) takes a simple form which includes as a special case the sign change of eigenfunctions of real symmetric matrices round a degeneracy. As an illustration γ(C) is calculated for spinning particles in slowly-changing magnetic fields; although the sign reversal of spinors on rotation is a special case, the effect is predicted to occur for bosons as well as fermions, and a method for observing it is proposed. It is shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor.

7,425 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
TL;DR: In this article, a new definition of order called topological order is proposed for two-dimensional systems in which no long-range order of the conventional type exists, and the possibility of a phase transition characterized by a change in the response of the system to an external perturbation is discussed in the context of a mean field type of approximation.
Abstract: A new definition of order called topological order is proposed for two-dimensional systems in which no long-range order of the conventional type exists. The possibility of a phase transition characterized by a change in the response of the system to an external perturbation is discussed in the context of a mean field type of approximation. The critical behaviour found in this model displays very weak singularities. The application of these ideas to the xy model of magnetism, the solid-liquid transition, and the neutral superfluid are discussed. This type of phase transition cannot occur in a superconductor nor in a Heisenberg ferromagnet.

6,371 citations

Journal ArticleDOI
TL;DR: In this paper, it is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-S$ Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic.
Abstract: It is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-$S$ Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic. The method of proof is capable of excluding a variety of types of ordering in one and two dimensions.

6,236 citations

Journal ArticleDOI
14 Jul 1995-Science
TL;DR: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled and exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
Abstract: A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled. The condensate fraction first appeared near a temperature of 170 nanokelvin and a number density of 2.5 x 10 12 per cubic centimeter and could be preserved for more than 15 seconds. Three primary signatures of Bose-Einstein condensation were seen. (i) On top of a broad thermal velocity distribution, a narrow peak appeared that was centered at zero velocity. (ii) The fraction of the atoms that were in this low-velocity peak increased abruptly as the sample temperature was lowered. (iii) The peak exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.

6,074 citations