scispace - formally typeset
Open AccessJournal ArticleDOI

Roton pair density wave and unconventional strong-coupling superconductivity in a topological kagome metal

Reads0
Chats0
TLDR
In this paper, the vanadium-based kagome lattice CsV3Sb5 was observed to exhibit a V-shaped pairing gap about 0.5 meV below a transition temperature Tc about 2.3 K.
Abstract
The recently discovered family of vanadium-based kagome metals with topological band structures offer a new opportunity to study frustrated, correlated and topological quantum states. These layered compounds are nonmagnetic and undergo charge density wave (CDW) transitions before developing superconductivity at low temperatures. Here we report the observation of unconventional superconductivity and pair density wave (PDW) in the vanadium-based kagome lattice CsV3Sb5 using scanning tunneling microscope/spectroscopy (STM/STS) and Josephson STS. The differential conductance exhibits a V-shaped pairing gap about 0.5 meV below a transition temperature Tc about 2.3 K. Superconducting phase coherence is observed by Josephson effect and Cooper-pair tunneling to a superconducting tip. We find that CsV3Sb5 is a strong-coupling superconductor (2delta/kBTc about 5) and coexists with 4a0 unidirectional and 2x2 charge order. Remarkably, we discover a 4a0/3 bidirectional PDW accompanied by spatial modulations of the coherence peak and gap-depth in the tunneling conductance. We term the latter as a roton-PDW that can produce a commensurate vortex-antivortex lattice to account for the observed conductance modulations. Above Tc, we observe long-range ordered 4a0 unidirectional and 2a0 bidirectional CDW and a large V-shaped pseudogap in the density of state. Electron-phonon calculations attribute the 2x2 CDW to phonon softening induced structural reconstruction, but the phonon mediated pairing cannot describe the observed strong-coupling superconductor. Our findings show that electron correlations in the charge sector can drive the 4a0 unidirectional CDW, unconventional superconductivity, and roton-PDW with striking analogies to the phenomenology of cuprate high-Tc superconductors, and provide the groundwork for understanding their microscopic origins in the vanadium-based kagome superconductors.

read more

Citations
More filters
Journal ArticleDOI

Charge Density Waves and Electronic Properties of Superconducting Kagome Metals.

TL;DR: In this article, the authors investigated the electronic and structural properties of charge density wave (CDW) by first-principles calculations and revealed an inverse Star of David deformation as the $2\ifmmode\times\else\texttimes\fi{}2
Journal ArticleDOI

Cascade of correlated electron states in the kagome superconductor CsV3Sb5.

TL;DR: In this paper, a temperature-dependent cascade of different symmetry-broken electronic states in a new kagome superconductor, CsV3Sb5, was discovered using spectroscopic imaging scanning tunnelling microscopy.
Posted Content

Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5

TL;DR: In this paper, the authors used spectroscopic-imaging scanning tunneling microscopy to reveal a pronounced intensity anisotropy between different 2a0 charge density wave (CDW) directions in KV3Sb5.
Posted Content

Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5

TL;DR: In this paper, the van Hove singularities (vHs) arising from an intrinsic electron-hole asymmetry were examined in a recently discovered kagome metal CsV3Sb5 exhibiting charge order and superconductivity.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.
Journal ArticleDOI

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu

TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Journal ArticleDOI

First principles phonon calculations in materials science

TL;DR: In this paper, the authors demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science, and demonstrate the importance of first principles phonon calculation in dynamical behaviors and thermal properties.
Related Papers (5)