scispace - formally typeset
Search or ask a question
Book

Rough Sets: Theoretical Aspects of Reasoning about Data

31 Oct 1991-
TL;DR: Theoretical Foundations.
Abstract: I. Theoretical Foundations.- 1. Knowledge.- 1.1. Introduction.- 1.2. Knowledge and Classification.- 1.3. Knowledge Base.- 1.4. Equivalence, Generalization and Specialization of Knowledge.- Summary.- Exercises.- References.- 2. Imprecise Categories, Approximations and Rough Sets.- 2.1. Introduction.- 2.2. Rough Sets.- 2.3. Approximations of Set.- 2.4. Properties of Approximations.- 2.5. Approximations and Membership Relation.- 2.6. Numerical Characterization of Imprecision.- 2.7. Topological Characterization of Imprecision.- 2.8. Approximation of Classifications.- 2.9. Rough Equality of Sets.- 2.10. Rough Inclusion of Sets.- Summary.- Exercises.- References.- 3. Reduction of Knowledge.- 3.1. Introduction.- 3.2. Reduct and Core of Knowledge.- 3.3. Relative Reduct and Relative Core of Knowledge.- 3.4. Reduction of Categories.- 3.5. Relative Reduct and Core of Categories.- Summary.- Exercises.- References.- 4. Dependencies in Knowledge Base.- 4.1. Introduction.- 4.2. Dependency of Knowledge.- 4.3. Partial Dependency of Knowledge.- Summary.- Exercises.- References.- 5. Knowledge Representation.- 5.1. Introduction.- 5.2. Examples.- 5.3. Formal Definition.- 5.4. Significance of Attributes.- 5.5. Discernibility Matrix.- Summary.- Exercises.- References.- 6. Decision Tables.- 6.1. Introduction.- 6.2. Formal Definition and Some Properties.- 6.3. Simplification of Decision Tables.- Summary.- Exercises.- References.- 7. Reasoning about Knowledge.- 7.1. Introduction.- 7.2. Language of Decision Logic.- 7.3. Semantics of Decision Logic Language.- 7.4. Deduction in Decision Logic.- 7.5. Normal Forms.- 7.6. Decision Rules and Decision Algorithms.- 7.7. Truth and Indiscernibility.- 7.8. Dependency of Attributes.- 7.9. Reduction of Consistent Algorithms.- 7.10. Reduction of Inconsistent Algorithms.- 7.11. Reduction of Decision Rules.- 7.12. Minimization of Decision Algorithms.- Summary.- Exercises.- References.- II. Applications.- 8. Decision Making.- 8.1. Introduction.- 8.2. Optician's Decisions Table.- 8.3. Simplification of Decision Table.- 8.4. Decision Algorithm.- 8.5. The Case of Incomplete Information.- Summary.- Exercises.- References.- 9. Data Analysis.- 9.1. Introduction.- 9.2. Decision Table as Protocol of Observations.- 9.3. Derivation of Control Algorithms from Observation.- 9.4. Another Approach.- 9.5. The Case of Inconsistent Data.- Summary.- Exercises.- References.- 10. Dissimilarity Analysis.- 10.1. Introduction.- 10.2. The Middle East Situation.- 10.3. Beauty Contest.- 10.4. Pattern Recognition.- 10.5. Buying a Car.- Summary.- Exercises.- References.- 11. Switching Circuits.- 11.1. Introduction.- 11.2. Minimization of Partially Defined Switching Functions.- 11.3. Multiple-Output Switching Functions.- Summary.- Exercises.- References.- 12. Machine Learning.- 12.1. Introduction.- 12.2. Learning From Examples.- 12.3. The Case of an Imperfect Teacher.- 12.4. Inductive Learning.- Summary.- Exercises.- References.
Citations
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Journal ArticleDOI
TL;DR: This approach seems to be of fundamental importance to artificial intelligence (AI) and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, decision support systems, inductive reasoning, and pattern recognition.
Abstract: Rough set theory, introduced by Zdzislaw Pawlak in the early 1980s [11, 12], is a new mathematical tool to deal with vagueness and uncertainty. This approach seems to be of fundamental importance to artificial intelligence (AI) and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, decision support systems, inductive reasoning, and pattern recognition.

7,185 citations

01 Jan 1998
TL;DR: This thesis addresses the problem of feature selection for machine learning through a correlation based approach with CFS (Correlation based Feature Selection), an algorithm that couples this evaluation formula with an appropriate correlation measure and a heuristic search strategy.
Abstract: A central problem in machine learning is identifying a representative set of features from which to construct a classification model for a particular task. This thesis addresses the problem of feature selection for machine learning through a correlation based approach. The central hypothesis is that good feature sets contain features that are highly correlated with the class, yet uncorrelated with each other. A feature evaluation formula, based on ideas from test theory, provides an operational definition of this hypothesis. CFS (Correlation based Feature Selection) is an algorithm that couples this evaluation formula with an appropriate correlation measure and a heuristic search strategy. CFS was evaluated by experiments on artificial and natural datasets. Three machine learning algorithms were used: C4.5 (a decision tree learner), IB1 (an instance based learner), and naive Bayes. Experiments on artificial datasets showed that CFS quickly identifies and screens irrelevant, redundant, and noisy features, and identifies relevant features as long as their relevance does not strongly depend on other features. On natural domains, CFS typically eliminated well over half the features. In most cases, classification accuracy using the reduced feature set equaled or bettered accuracy using the complete feature set. Feature selection degraded machine learning performance in cases where some features were eliminated which were highly predictive of very small areas of the instance space. Further experiments compared CFS with a wrapper—a well known approach to feature selection that employs the target learning algorithm to evaluate feature sets. In many cases CFS gave comparable results to the wrapper, and in general, outperformed the wrapper on small datasets. CFS executes many times faster than the wrapper, which allows it to scale to larger datasets. Two methods of extending CFS to handle feature interaction are presented and experimentally evaluated. The first considers pairs of features and the second incorporates iii feature weights calculated by the RELIEF algorithm. Experiments on artificial domains showed that both methods were able to identify interacting features. On natural domains, the pairwise method gave more reliable results than using weights provided by RELIEF.

3,533 citations

01 Jan 2006
TL;DR: There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99].
Abstract: The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [PSF91], is an early collection of research papers on knowledge discovery from data. The book Advances in Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy [FPSSe96], is a collection of later research results on knowledge discovery and data mining. There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99], Building Data Mining Applications for CRM by Berson, Smith, and Thearling [BST99], Data Mining: Practical Machine Learning Tools and Techniques by Witten and Frank [WF05], Principles of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMS01], The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman [HTF01], Data Mining: Introductory and Advanced Topics by Dunham, and Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra and Acharya [MA03]. There are also books containing collections of papers on particular aspects of knowledge discovery, such as Machine Learning and Data Mining: Methods and Applications edited by Michalski, Brakto, and Kubat [MBK98], and Relational Data Mining edited by Dzeroski and Lavrac [De01], as well as many tutorial notes on data mining in major database, data mining and machine learning conferences.

2,591 citations

Journal ArticleDOI
TL;DR: The basic concepts of rough set theory are presented and some rough set-based research directions and applications are pointed out, indicating that the rough set approach is fundamentally important in artificial intelligence and cognitive sciences.

2,004 citations


Cites background from "Rough Sets: Theoretical Aspects of ..."

  • ..., [28,33,44,48,74,97,112,113,131,182,194,195,206,237,241,244,245,272,305,374]), issues of the Transactions on Rough Sets [225–228], special issues of other journals (see, e....

    [...]

  • ...Rough set theory, proposed by Pawlak in 1982 [202,206] can be seen as a new mathematical approach to vagueness....

    [...]