scispace - formally typeset
Proceedings ArticleDOI

Router Buffer Caching for Managing Shared Cache Blocks in Tiled Multi-Core Processors

01 Oct 2020-pp 239-246

...read more


References
More filters
Book

[...]

01 Jan 2004
TL;DR: This book offers a detailed and comprehensive presentation of the basic principles of interconnection network design, clearly illustrating them with numerous examples, chapter exercises, and case studies, allowing a designer to see all the steps of the process from abstract design to concrete implementation.
Abstract: One of the greatest challenges faced by designers of digital systems is optimizing the communication and interconnection between system components. Interconnection networks offer an attractive and economical solution to this communication crisis and are fast becoming pervasive in digital systems. Current trends suggest that this communication bottleneck will be even more problematic when designing future generations of machines. Consequently, the anatomy of an interconnection network router and science of interconnection network design will only grow in importance in the coming years. This book offers a detailed and comprehensive presentation of the basic principles of interconnection network design, clearly illustrating them with numerous examples, chapter exercises, and case studies. It incorporates hardware-level descriptions of concepts, allowing a designer to see all the steps of the process from abstract design to concrete implementation. ·Case studies throughout the book draw on extensive author experience in designing interconnection networks over a period of more than twenty years, providing real world examples of what works, and what doesn't. ·Tightly couples concepts with implementation costs to facilitate a deeper understanding of the tradeoffs in the design of a practical network. ·A set of examples and exercises in every chapter help the reader to fully understand all the implications of every design decision. Table of Contents Chapter 1 Introduction to Interconnection Networks 1.1 Three Questions About Interconnection Networks 1.2 Uses of Interconnection Networks 1.3 Network Basics 1.4 History 1.5 Organization of this Book Chapter 2 A Simple Interconnection Network 2.1 Network Specifications and Constraints 2.2 Topology 2.3 Routing 2.4 Flow Control 2.5 Router Design 2.6 Performance Analysis 2.7 Exercises Chapter 3 Topology Basics 3.1 Nomenclature 3.2 Traffic Patterns 3.3 Performance 3.4 Packaging Cost 3.5 Case Study: The SGI Origin 2000 3.6 Bibliographic Notes 3.7 Exercises Chapter 4 Butterfly Networks 4.1 The Structure of Butterfly Networks 4.2 Isomorphic Butterflies 4.3 Performance and Packaging Cost 4.4 Path Diversity and Extra Stages 4.5 Case Study: The BBN Butterfly 4.6 Bibliographic Notes 4.7 Exercises Chapter 5 Torus Networks 5.1 The Structure of Torus Networks 5.2 Performance 5.3 Building Mesh and Torus Networks 5.4 Express Cubes 5.5 Case Study: The MIT J-Machine 5.6 Bibliographic Notes 5.7 Exercises Chapter 6 Non-Blocking Networks 6.1 Non-Blocking vs. Non-Interfering Networks 6.2 Crossbar Networks 6.3 Clos Networks 6.4 Benes Networks 6.5 Sorting Networks 6.6 Case Study: The Velio VC2002 (Zeus) Grooming Switch 6.7 Bibliographic Notes 6.8 Exercises Chapter 7 Slicing and Dicing 7.1 Concentrators and Distributors 7.2 Slicing and Dicing 7.3 Slicing Multistage Networks 7.4 Case Study: Bit Slicing in the Tiny Tera 7.5 Bibliographic Notes 7.6 Exercises Chapter 8 Routing Basics 8.1 A Routing Example 8.2 Taxonomy of Routing Algorithms 8.3 The Routing Relation 8.4 Deterministic Routing 8.5 Case Study: Dimension-Order Routing in the Cray T3D 8.6 Bibliographic Notes 8.7 Exercises Chapter 9 Oblivious Routing 9.1 Valiant's Randomized Routing Algorithm 9.2 Minimal Oblivious Routing 9.3 Load-Balanced Oblivious Routing 9.4 Analysis of Oblivious Routing 9.5 Case Study: Oblivious Routing in the Avici Terabit Switch Router(TSR) 9.6 Bibliographic Notes 9.7 Exercises Chapter 10 Adaptive Routing 10.1 Adaptive Routing Basics 10.2 Minimal Adaptive Routing 10.3 Fully Adaptive Routing 10.4 Load-Balanced Adaptive Routing 10.5 Search-Based Routing 10.6 Case Study: Adaptive Routing in the Thinking Machines CM-5 10.7 Bibliographic Notes 10.8 Exercises Chapter 11 Routing Mechanics 11.1 Table-Based Routing 11.2 Algorithmic Routing 11.3 Case Study: Oblivious Source Routing in the IBM Vulcan Network 11.4 Bibliographic Notes 11.5 Exercises Chapter 12 Flow Control Basics 12.1 Resources and Allocation Units 12.2 Bufferless Flow Control 12.3 Circuit Switching 12.4 Bibliographic Notes 12.5 Exercises Chapter 13 Buffered Flow Control 13.1 Packet-Buffer Flow Control 13.2 Flit-Buffer Flow Control 13.3 Buffer Management and Backpressure 13.4 Flit-Reservation Flow Control 13.5 Bibliographic Notes 13.6 Exercises Chapter 14 Deadlock and Livelock 14.1 Deadlock 14.2 Deadlock Avoidance 14.3 Adaptive Routing 14.4 Deadlock Recovery 14.5 Livelock 14.6 Case Study: Deadlock Avoidance in the Cray T3E 14.7 Bibliographic Notes 14.8 Exercises Chapter 15 Quality of Service 15.1 Service Classes and Service Contracts 15.2 Burstiness and Network Delays 15.3 Implementation of Guaranteed Services 15.4 Implementation of Best-Effort Services 15.5 Separation of Resources 15.6 Case Study: ATM Service Classes 15.7 Case Study: Virtual Networks in the Avici TSR 15.8 Bibliographic Notes 15.9 Exercises Chapter 16 Router Architecture 16.1 Basic Router Architecture 16.2 Stalls 16.3 Closing the Loop with Credits 16.4 Reallocating a Channel 16.5 Speculation and Lookahead 16.6 Flit and Credit Encoding 16.7 Case Study: The Alpha 21364 Router 16.8 Bibliographic Notes 16.9 Exercises Chapter 17 Router Datapath Components 17.1 Input Buffer Organization 17.2 Switches 17.3 Output Organization 17.4 Case Study: The Datapath of the IBM Colony Router 17.5 Bibliographic Notes 17.6 Exercises Chapter 18 Arbitration 18.1 Arbitration Timing 18.2 Fairness 18.3 Fixed Priority Arbiter 18.4 Variable Priority Iterative Arbiters 18.5 Matrix Arbiter 18.6 Queuing Arbiter 18.7 Exercises Chapter 19 Allocation 19.1 Representations 19.2 Exact Algorithms 19.3 Separable Allocators 19.4 Wavefront Allocator 19.5 Incremental vs. Batch Allocation 19.6 Multistage Allocation 19.7 Performance of Allocators 19.8 Case Study: The Tiny Tera Allocator 19.9 Bibliographic Notes 19.10 Exercises Chapter 20 Network Interfaces 20.1 Processor-Network Interface 20.2 Shared-Memory Interface 20.3 Line-Fabric Interface 20.4 Case Study: The MIT M-Machine Network Interface 20.5 Bibliographic Notes 20.6 Exercises Chapter 21 Error Control 411 21.1 Know Thy Enemy: Failure Modes and Fault Models 21.2 The Error Control Process: Detection, Containment, and Recovery 21.3 Link Level Error Control 21.4 Router Error Control 21.5 Network-Level Error Control 21.6 End-to-end Error Control 21.7 Bibliographic Notes 21.8 Exercises Chapter 22 Buses 22.1 Bus Basics 22.2 Bus Arbitration 22.3 High Performance Bus Protocol 22.4 From Buses to Networks 22.5 Case Study: The PCI Bus 22.6 Bibliographic Notes 22.7 Exercises Chapter 23 Performance Analysis 23.1 Measures of Interconnection Network Performance 23.2 Analysis 23.3 Validation 23.4 Case Study: Efficiency and Loss in the BBN Monarch Network 23.5 Bibliographic Notes 23.6 Exercises Chapter 24 Simulation 24.1 Levels of Detail 24.2 Network Workloads 24.3 Simulation Measurements 24.4 Simulator Design 24.5 Bibliographic Notes 24.6 Exercises Chapter 25 Simulation Examples 495 25.1 Routing 25.2 Flow Control Performance 25.3 Fault Tolerance Appendix A Nomenclature Appendix B Glossary Appendix C Network Simulator

3,149 citations

Journal ArticleDOI

[...]

01 Sep 1991
TL;DR: A new set of benchmarks has been developed for the performance evaluation of highly parallel supercom puters that mimic the computation and data move ment characteristics of large-scale computational fluid dynamics applications.
Abstract: A new set of benchmarks has been developed for the performance evaluation of highly parallel supercom puters. These consist of five "parallel kernel" bench marks and three "simulated application" benchmarks. Together they mimic the computation and data move ment characteristics of large-scale computational fluid dynamics applications. The principal distinguishing feature of these benchmarks is their "pencil and paper" specification-all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional bench- marking approaches on highly parallel systems are avoided.

2,225 citations

Proceedings ArticleDOI

[...]

01 Oct 2002
TL;DR: This paper proposes physical designs for these Non-Uniform Cache Architectures (NUCAs) and extends these physical designs with logical policies that allow important data to migrate toward the processor within the same level of the cache.
Abstract: Growing wire delays will force substantive changes in the designs of large caches. Traditional cache architectures assume that each level in the cache hierarchy has a single, uniform access time. Increases in on-chip communication delays will make the hit time of large on-chip caches a function of a line's physical location within the cache. Consequently, cache access times will become a continuum of latencies rather than a single discrete latency. This non-uniformity can be exploited to provide faster access to cache lines in the portions of the cache that reside closer to the processor. In this paper, we evaluate a series of cache designs that provides fast hits to multi-megabyte cache memories. We first propose physical designs for these Non-Uniform Cache Architectures (NUCAs). We extend these physical designs with logical policies that allow important data to migrate toward the processor within the same level of the cache. We show that, for multi-megabyte level-two caches, an adaptive, dynamic NUCA design achieves 1.5 times the IPC of a Uniform Cache Architecture of any size, outperforms the best static NUCA scheme by 11%, outperforms the best three-level hierarchy--while using less silicon area--by 13%, and comes within 13% of an ideal minimal hit latency solution.

787 citations

Proceedings ArticleDOI

[...]

12 Nov 2011
TL;DR: Interval simulation provides a balance between detailed cycle-accurate simulation and one-IPC simulation, allowing long-running simulations to be modeled much faster than with detailed cycle, while still providing the detail necessary to observe core-uncore interactions across the entire system.
Abstract: Two major trends in high-performance computing, namely, larger numbers of cores and the growing size of on-chip cache memory, are creating significant challenges for evaluating the design space of future processor architectures. Fast and scalable simulations are therefore needed to allow for sufficient exploration of large multi-core systems within a limited simulation time budget. By bringing together accurate high-abstraction analytical models with fast parallel simulation, architects can trade off accuracy with simulation speed to allow for longer application runs, covering a larger portion of the hardware design space. Interval simulation provides this balance between detailed cycle-accurate simulation and one-IPC simulation, allowing long-running simulations to be modeled much faster than with detailed cycle-accurate simulation, while still providing the detail necessary to observe core-uncore interactions across the entire system. Validations against real hardware show average absolute errors within 25% for a variety of multi-threaded workloads; more than twice as accurate on average as one-IPC simulation. Further, we demonstrate scalable simulation speed of up to 2.0 MIPS when simulating a 16-core system on an 8-core SMP machine.

735 citations

Proceedings ArticleDOI

[...]

23 Feb 2013
TL;DR: This paper presents a lightweight graph processing framework that is specific for shared-memory parallel/multicore machines, which makes graph traversal algorithms easy to write and significantly more efficient than previously reported results using graph frameworks on machines with many more cores.
Abstract: There has been significant recent interest in parallel frameworks for processing graphs due to their applicability in studying social networks, the Web graph, networks in biology, and unstructured meshes in scientific simulation. Due to the desire to process large graphs, these systems have emphasized the ability to run on distributed memory machines. Today, however, a single multicore server can support more than a terabyte of memory, which can fit graphs with tens or even hundreds of billions of edges. Furthermore, for graph algorithms, shared-memory multicores are generally significantly more efficient on a per core, per dollar, and per joule basis than distributed memory systems, and shared-memory algorithms tend to be simpler than their distributed counterparts.In this paper, we present a lightweight graph processing framework that is specific for shared-memory parallel/multicore machines, which makes graph traversal algorithms easy to write. The framework has two very simple routines, one for mapping over edges and one for mapping over vertices. Our routines can be applied to any subset of the vertices, which makes the framework useful for many graph traversal algorithms that operate on subsets of the vertices. Based on recent ideas used in a very fast algorithm for breadth-first search (BFS), our routines automatically adapt to the density of vertex sets. We implement several algorithms in this framework, including BFS, graph radii estimation, graph connectivity, betweenness centrality, PageRank and single-source shortest paths. Our algorithms expressed using this framework are very simple and concise, and perform almost as well as highly optimized code. Furthermore, they get good speedups on a 40-core machine and are significantly more efficient than previously reported results using graph frameworks on machines with many more cores.

672 citations


Related Papers (5)