scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Routing in cognitive radio networks: Challenges and solutions

01 May 2011-Vol. 9, Iss: 3, pp 228-248
TL;DR: This work provides an extensive overview of the research in the field of routing for CRNs, clearly differentiating two main categories: approaches based on a full spectrum knowledge, and approaches that consider only local spectrum knowledge obtained via distributed procedures and protocols.
Abstract: Cognitive radio networks (CRNs) are composed of cognitive, spectrum-agile devices capable of changing their configurations on the fly based on the spectral environment. This capability opens up the possibility of designing flexible and dynamic spectrum access strategies with the purpose of opportunistically reusing portions of the spectrum temporarily vacated by licensed primary users. On the other hand, the flexibility in the spectrum access phase comes with an increased complexity in the design of communication protocols at different layers. This work focuses on the problem of designing effective routing solutions for multi-hop CRNs, which is a focal issue to fully unleash the potentials of the cognitive networking paradigm. We provide an extensive overview of the research in the field of routing for CRNs, clearly differentiating two main categories: approaches based on a full spectrum knowledge, and approaches that consider only local spectrum knowledge obtained via distributed procedures and protocols. In each category we describe and comment on proposed design methodologies, routing metrics and practical implementation issues. Finally, possible future research directions are also proposed.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Jul 2014
TL;DR: The technological scenario of M2M communications consisting of wireless infrastructure to cloud, and machine swarm of tremendous devices is presented to complete fundamental understanding and engineering knowledge of this new communication and networking technology front.
Abstract: Machine-to-machine (M2M) communications emerge to autonomously operate to link interactions between Internet cyber world and physical systems. We present the technological scenario of M2M communications consisting of wireless infrastructure to cloud, and machine swarm of tremendous devices. Related technologies toward practical realization are explored to complete fundamental understanding and engineering knowledge of this new communication and networking technology front.

184 citations

Journal ArticleDOI
TL;DR: This paper surveys novel approaches and discusses research challenges related to the use of cognitive radio technology for Internet of things, and intends to help new researchers entering the domain of CR and IoT by providing a comprehensive survey on recent advances.

164 citations

Journal ArticleDOI
TL;DR: An opportunistic cognitive routing (OCR) protocol is proposed that allows users to exploit the geographic location information and discover the local spectrum access opportunities to improve the transmission performance over each hop.
Abstract: In this paper, cognitive routing coupled with spectrum sensing and sharing in a multi-channel multi-hop cognitive radio network (CRN) is investigated. Recognizing the spectrum dynamics in CRN, we propose an opportunistic cognitive routing (OCR) protocol that allows users to exploit the geographic location information and discover the local spectrum access opportunities to improve the transmission performance over each hop. Specifically, based on location information and channel usage statistics, a secondary user (SU) distributedly selects the next hop relay and adapts its transmission to the dynamic spectrum access opportunities in its neighborhood. In addition, we introduce a novel metric, namely, cognitive transport throughput (CTT), to capture the unique properties of CRN and evaluate the potential relay gain of each relay candidate. A heuristic algorithm is proposed to reduce the searching complexity of the optimal selection of channel and relay. Simulation results are given to demonstrate that our proposed OCR well adapts to the spectrum dynamics and outperforms existing routing protocols in CRN.

138 citations


Cites background from "Routing in cognitive radio networks..."

  • ...Routing in CRN can be formulated as a global optimization problem with the channel-link allocation for data flows in the network [11]....

    [...]

Journal ArticleDOI
TL;DR: Cognitive radio (CR) methods relevant to industrial applications are summarized, covering CR architecture, spectrum access and interference management, spectrum sensing, dynamic spectrum access (DSA), game theory, and CR network (CRN) security.
Abstract: Industrial wireless sensor networks (IWSNs) have to contend with environments that are usually harsh and time-varying. Industrial wireless technology, such as WirelessHART and ISA 100.11a, also operates in a frequency spectrum utilized by many other wireless technologies. With wireless applications rapidly growing, it is possible that multiple heterogeneous wireless systems would need to operate in overlapping spatiotemporal regions. Interference such as noise or other wireless devices affects connectivity and reduces communication link quality. This negatively affects reliability and latency, which are core requirements of industrial communication. Building wireless networks that are resistant to noise in industrial environments and coexisting with competing wireless devices in an increasingly crowded frequency spectrum is challenging. To meet these challenges, we need to consider the benefits that approaches finding success in other application areas can offer industrial communication. Cognitive radio (CR) methods offer a potential solution to improve resistance of IWSNs to interference. Integrating CR principles into the lower layers of IWSNs can enable devices to detect and avoid interference, and potentially opens the possibility of utilizing free radio spectrum for additional communication channels. This improves resistance to noise and increases redundancy in terms of channels per network node or adding additional nodes. In this paper, we summarize CR methods relevant to industrial applications, covering CR architecture, spectrum access and interference management, spectrum sensing, dynamic spectrum access (DSA), game theory, and CR network (CRN) security.

137 citations


Cites background from "Routing in cognitive radio networks..."

  • ...Examples of such patterns include pilot signals, preambles, midambles, and spread sequences....

    [...]

Journal ArticleDOI
TL;DR: A system model is proposed for cooperative centralized and distributed spectrum sensing in vehicular networks to minimize both the spectral scarcity and high mobility issues and the results show that the cooperative cognitive model is more suitable for Vehicular networks that minimize interference and hidden PU problem.
Abstract: To resolve the contradictions between the increasing demand of vehicular wireless applications and the shortage of spectrum resources, high mobility, short link lifetime, and spectrum efficiency, a novel cognitive radio (CR) and efficient management of spectrum in vehicular communication is required. Therefore, to exhibit the importance of spectral efficiency, a system model is proposed for cooperative centralized and distributed spectrum sensing in vehicular networks. The proposed architecture is used to minimize both the spectral scarcity and high mobility issues. Furthermore, we analyze the decision fusion techniques in cooperative spectrum sensing for vehicular networks. In addition, a system model is designed for decision fusion techniques using renewal theory, and then, we analyze the probability of detection of primary channel and the average waiting time for CR user or secondary user in PU transmitter. Finally, mathematical analysis is performed to check the probability of detection and false alarm. The results show that the cooperative cognitive model is more suitable for vehicular networks that minimize interference and hidden PU problem.

132 citations

References
More filters
Journal ArticleDOI
TL;DR: The novel functionalities and current research challenges of the xG networks are explained in detail, and a brief overview of the cognitive radio technology is provided and the xg network architecture is introduced.

6,608 citations


"Routing in cognitive radio networks..." refers background in this paper

  • ...Licenses are granted the rights for the use of various, often relatively small, frequency bands on a long term basis over vast geographical regions....

    [...]

01 Jan 2000
TL;DR: This article briefly reviews the basic concepts about cognitive radio CR, and the need for software-defined radios is underlined and the most important notions used for such.
Abstract: An Integrated Agent Architecture for Software Defined Radio. Rapid-prototype cognitive radio, CR1, was developed to apply these.The modern software defined radio has been called the heart of a cognitive radio. Cognitive radio: an integrated agent architecture for software defined radio. Http:bwrc.eecs.berkeley.eduResearchMCMACR White paper final1.pdf. The cognitive radio, built on a software-defined radio, assumes. Radio: An Integrated Agent Architecture for Software Defined Radio, Ph.D. The need for software-defined radios is underlined and the most important notions used for such. Mitola III, Cognitive radio: an integrated agent architecture for software defined radio, Ph.D. This results in the set-theoretic ontology of radio knowledge defined in the. Cognitive Radio An Integrated Agent Architecture for Software.This article first briefly reviews the basic concepts about cognitive radio CR. Cognitive Radio-An Integrated Agent Architecture for Software Defined Radio. Cognitive Radio RHMZ 2007. Software-defined radio SDR idea 1. Cognitive radio: An integrated agent architecture for software.Cognitive Radio SOFTWARE DEFINED RADIO, AND ADAPTIVE WIRELESS SYSTEMS2 Cognitive Networks. 3 Joseph Mitola III, Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio Stockholm.

3,814 citations


"Routing in cognitive radio networks..." refers background in this paper

  • ...We provide an extensive overview of the research in the field of routing for CRNs, clearly differentiating two main categories: approaches based on a full spectrum knowledge, and approaches that consider only local spectrum knowledge obtained via distributed procedures and protocols....

    [...]

Journal ArticleDOI
TL;DR: Recent developments and open research issues in spectrum management in CR networks are presented and four main challenges of spectrum management are discussed: spectrum sensing, spectrum decision, spectrum sharing, and spectrum mobility.
Abstract: Cognitive radio networks will provide high bandwidth to mobile users via heterogeneous wireless architectures and dynamic spectrum access techniques. However, CR networks impose challenges due to the fluctuating nature of the available spectrum, as well as the diverse QoS requirements of various applications. Spectrum management functions can address these challenges for the realization of this new network paradigm. To provide a better understanding of CR networks, this article presents recent developments and open research issues in spectrum management in CR networks. More specifically, the discussion is focused on the development of CR networks that require no modification of existing networks. First, a brief overview of cognitive radio and the CR network architecture is provided. Then four main challenges of spectrum management are discussed: spectrum sensing, spectrum decision, spectrum sharing, and spectrum mobility.

1,722 citations


"Routing in cognitive radio networks..." refers background in this paper

  • ...Introduction less technologies, their market penetration, and the com- Current wireless networks are regulated by governmental agencies mainly according to a fixed spectrum assignment policy....

    [...]

  • ...Challenge 2: the set up of ‘‘quality” routes in dynamic variable environment; the very same concept of ‘‘route quality” is to be re-defined under CRN scenario....

    [...]

Journal ArticleDOI
01 Jul 2009
TL;DR: In this article, spectrum management functionalities such as spectrum sensing, spectrum sharing and spectrum decision, and spectrum mobility are introduced from the viewpoint of a network requiring distributed coordination, and a particular emphasis is given to distributed coordination between CR users through the establishment of a common control channel.
Abstract: Cognitive radio (CR) technology is envisaged to solve the problems in wireless networks resulting from the limited available spectrum and the inefficiency in the spectrum usage by exploiting the existing wireless spectrum opportunistically. CR networks, equipped with the intrinsic capabilities of the cognitive radio, will provide an ultimate spectrum-aware communication paradigm in wireless communications. CR networks, however, impose unique challenges due to the high fluctuation in the available spectrum as well as diverse quality-of-service (QoS) requirements. Specifically, in cognitive radio ad hoc networks (CRAHNs), the distributed multi-hop architecture, the dynamic network topology, and the time and location varying spectrum availability are some of the key distinguishing factors. In this paper, intrinsic properties and current research challenges of the CRAHNs are presented. First, novel spectrum management functionalities such as spectrum sensing, spectrum sharing, and spectrum decision, and spectrum mobility are introduced from the viewpoint of a network requiring distributed coordination. A particular emphasis is given to distributed coordination between CR users through the establishment of a common control channel. Moreover, the influence of these functions on the performance of the upper layer protocols, such as the network layer, and transport layer protocols are investigated and open research issues in these areas are also outlined. Finally, a new direction called the commons model is explained, where CRAHN users may independently regulate their own operation based on pre-decided spectrum etiquette.

1,334 citations


"Routing in cognitive radio networks..." refers background in this paper

  • ...SDRs allow the development of spectrum-agile devices that can be programmed to operate on a wide spectrum range and tuned to any frequency band in that range with limited delay [2,3]....

    [...]

Proceedings ArticleDOI
16 Aug 2009
TL;DR: This work presents the design and implementation of Net7, the first Wi-Fi like system constructed on top of UHF white spaces, which incorporates a new adaptive spectrum assignment algorithm to handle spectrum variation and fragmentation, and proposes a low overhead protocol to handle temporal variation.
Abstract: Networking over UHF white spaces is fundamentally different from conventional Wi-Fi along three axes: spatial variation, temporal variation, and fragmentation of the UHF spectrum. Each of these differences gives rise to new challenges for implementing a wireless network in this band. We present the design and implementation of Net7, the first Wi-Fi like system constructed on top of UHF white spaces. Net7 incorporates a new adaptive spectrum assignment algorithm to handle spectrum variation and fragmentation, and proposes a low overhead protocol to handle temporal variation. builds on a simple technique, called SIFT, that reduces the time to detect transmissions in variable channel width systems by analyzing raw signals in the time domain. We provide an extensive evaluation of the system in terms of a prototype implementation and detailed experimental and simulation results.

499 citations