scispace - formally typeset
Search or ask a question
Journal ArticleDOI

RSSI-Based Indoor Localization With the Internet of Things

04 Jun 2018-IEEE Access (IEEE)-Vol. 6, pp 30149-30161
TL;DR: Four wireless technologies for indoor localization: Wi-Fi (IEEE 802.11n-2009 at the 2.4 GHz band), Bluetooth low energy, Zigbee, and long-range wide-area network are compared in terms of localization accuracy and power consumption when IoT devices are used.
Abstract: In the era of smart cities, there are a plethora of applications where the localization of indoor environments is important, from monitoring and tracking in smart buildings to proximity marketing and advertising in shopping malls. The success of these applications is based on the development of a cost-efficient and robust real-time system capable of accurately localizing objects. In most outdoor localization systems, global positioning system (GPS) is used due to its ease of implementation and accuracy up to five meters. However, due to the limited space that comes with performing localization of indoor environments and the large number of obstacles found indoors, GPS is not a suitable option. Hence, accurately and efficiently locating objects is a major challenge in indoor environments. Recent advancements in the Internet of Things (IoT) along with novel wireless technologies can alleviate the problem. Small-size and cost-efficient IoT devices which use wireless protocols can provide an attractive solution. In this paper, we compare four wireless technologies for indoor localization: Wi-Fi (IEEE 802.11n-2009 at the 2.4 GHz band), Bluetooth low energy, Zigbee, and long-range wide-area network. These technologies are compared in terms of localization accuracy and power consumption when IoT devices are used. The received signal strength indicator (RSSI) values from each modality were used and trilateration was performed for localization. The RSSI data set is available online. The experimental results can be used as an indicator in the selection of a wireless technology for an indoor localization system following application requirements.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors carried out an experimental evaluation which would help to decide which wireless standard i.e., Wi-Fi, Bluetooth Low Energy (BLE), and LoRa are most suitable for indoor localization.
Abstract: There are surplus applications in modern smart cities where localization of indoor environments is critical ranging from surveillance and trailing in smart structures to the localized wireless distribution of advertising content in shopping malls. These applications are only successful if a robust and cost-effective real-time system is developed for precise localization. Another aspect considered for indoor localization is power consumption. Recent wireless standards such as Bluetooth Low Energy (BLE) and LoRa consume less power which makes them a perfect candidate for indoor localization. This work aims to carry out an experimental evaluation which would help to decide which wireless standard i.e., Wi-Fi, Bluetooth Low Energy (BLE), and LoRa are most suitable for indoor localization. Experiments are carried out using trilateration in three multiple environments. RSSI is used to calculate the coordinates of a sensor node. Results obtained from the experiment show that Wi-Fi is most accurate with an average error of 0.54 m. LoRa is second most accurate with an average error of 0.62 m and BLE is the least accurate with an average error of 0.82 m. These results can be used to decide which wireless standard is best suited for indoor localization.

14 citations

Journal ArticleDOI
TL;DR: This work proposes a method to improve accuracy for the RSS-based position estimation method, i.e., multilateration using Least Square Estimation, and considers PDR-based and improved RSS- based positions both have Gaussian uncertainty due to initial position plus drifting and RSS-to-distance conversion, respectively.
Abstract: In this work, we study the problem of fusing one Pedestrian-Dead-Reckoning-based (PDR-based) position measurement and one instant Received-Signal-Strength-based (RSS-based) position measurement. This situation can arise in a smartphone-based indoor positioning system when we want to locate a moving user in real-time with sustainable accuracy, but the RSS sampling ability of smartphones is limited; for example, one RSS sample per second. Firstly, by investigating RSS’s heterogeneity, we offer a solution for RSS-based continuous positioning problems under a low RSS sampling rate that satisfies real-time requirements. Secondly, we propose a method to improve accuracy for the RSS-based position estimation method, i.e., multilateration using Least Square Estimation. We consider PDR-based and improved RSS-based positions both have Gaussian uncertainty due to initial position plus drifting and RSS-to-distance conversion, respectively. Then, the Kalman filter will fuse two kinds of Gaussian distribution to produce more precise positions. The method is intended to design a real-time system for locating a moving target. Experiments are conducted in real indoor space with a commodity device. Its results show that our proposed solution is highly accurate and feasible in actual deployment.

14 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new WiFi-based indoor localization system that takes advantage of the great ability of Convolutional Neural Networks in classification problems, and three different approaches were used to achieve this goal: a custom architecture called WiFiNet, designed and trained specifically to solve this problem, and the most popular pre-trained networks using both transfer learning and feature extraction.
Abstract: Different technologies have been proposed to provide indoor localisation: magnetic field, Bluetooth, WiFi, etc. Among them, WiFi is the one with the highest availability and highest accuracy. This fact allows for an ubiquitous accurate localisation available for almost any environment and any device. However, WiFi-based localisation is still an open problem. In this article, we propose a new WiFi-based indoor localisation system that takes advantage of the great ability of Convolutional Neural Networks in classification problems. Three different approaches were used to achieve this goal: a custom architecture called WiFiNet, designed and trained specifically to solve this problem, and the most popular pre-trained networks using both transfer learning and feature extraction. Results indicate that WiFiNet is as a great approach for indoor localisation in a medium-sized environment (30 positions and 113 access points) as it reduces the mean localisation error (33%) and the processing time when compared with state-of-the-art WiFi indoor localisation algorithms such as SVM.

14 citations

Journal ArticleDOI
01 Oct 2020
TL;DR: A Kalman filter and a particle filter were used to achieve higher accuracy in a data-driven partial discharge source localisation method employing noisy ultra-high frequency received signal strength indicator (RSSI) and particle filter.
Abstract: To achieve comprehensive insulation deterioration motoring of power equipment and early fault warning in air-insulated substations, a data-driven partial discharge (PD) source localisation method employing noisy ultra-high frequency (UHF) received signal strength indicator (RSSI) and particle filter is proposed in this study. Compared with the existing UHF time-difference-based techniques, UHF wireless sensor arrays and RSSI-based methods provide an economical and high-adaptability solution. However, owing to the multi-pathing and shadowing effects, UHF signal attenuation cannot be modelled. Therefore, a Kalman filter was employed to smoothen the RSSI signal. Furthermore, a semi-parametric regression model is proposed to achieve a more accurate relationship between the RSSI and the transmission distance. Finally, in contrast to traditional localisation algorithms directly based on the RSSI ranging model, a particle filter was used to achieve higher accuracy. It predicted the best distribution of the position of PD by learning and considering all the system states of the previous moment. The laboratory test was performed within an area of 6 m × 6 m, and the results demonstrate that the mean PD source localisation error was 1.16 m, which gives a potential application for the identification of power equipment with insulation deterioration in a substation, while the accuracy is still needed to be verified further by field tests.

14 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: A novel methodology for localizing using TDoA is presented, which depends on the hyperbolic functions to localize the node on a hyperbola, rather than locating it in a free position in the space potentially suffering from the influence of the timestamp imperfections.
Abstract: Internet of Things (IoT) has been scaling up over the last few years in multiple applications and due to the need for geolocation and tracking capabilities, the usage of traditional Time Difference of Arrival (TDOA) arises. In this paper, a novel methodology for localizing using TDoA is presented, after the detailed and complete description of the TDoA has been provided. This proposed method depends on the hyperbolic functions to localize the node on a hyperbola, rather than locating it in a free position in the space potentially suffering from the influence of the timestamp imperfections. Thus, the proposed approach is finding this location on a hyperbola at a point which has the minimum Euclidean distance to all the other hyperbolas. A comparison is performed investigating the attainable accuracies for localizing based on this parametric TDoA and the classical TDoA method, on a well-defined simulation environment. The simulator is based on a Poisson distribution approach for defining the gateways and the node topology, as well as a noise model for emulating the oscillator drift at the gateways. In the given results, the feasibility of the proposed technique is asserted by a drastic improvement over a wide range of drift variances and the number of gateways. This manifests the robustness of the contributed method to the outlier timestamps and its optimum rendering, especially when the number of gateways is expected to be increased in the future.

13 citations


Cites methods from "RSSI-Based Indoor Localization With..."

  • ...In the field of GPS-Free localization in IoT, plenty of researches have been done various investigations to the methods based on Received Signal Strength Indicator (RSSI), Angle of Arrival (AOA), Time of Arrival (TOA), Time Difference of Arrival (TDOA) and their multiple combinations [6]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.
Abstract: The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different and heterogeneous end systems, while providing open access to selected subsets of data for the development of a plethora of digital services. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we focus specifically to an urban IoT system that, while still being quite a broad category, are characterized by their specific application domain. Urban IoTs, in fact, are designed to support the Smart City vision, which aims at exploiting the most advanced communication technologies to support added-value services for the administration of the city and for the citizens. This paper hence provides a comprehensive survey of the enabling technologies, protocols, and architecture for an urban IoT. Furthermore, the paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.

4,335 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...These devices are capable of communicating with the IoT to allow for smart buildings to poses a greater amount of control that could never have been achieved before [1], [2]....

    [...]

Journal ArticleDOI
01 Nov 2007
TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.
Abstract: Wireless indoor positioning systems have become very popular in recent years. These systems have been successfully used in many applications such as asset tracking and inventory management. This paper provides an overview of the existing wireless indoor positioning solutions and attempts to classify different techniques and systems. Three typical location estimation schemes of triangulation, scene analysis, and proximity are analyzed. We also discuss location fingerprinting in detail since it is used in most current system or solutions. We then examine a set of properties by which location systems are evaluated, and apply this evaluation method to survey a number of existing systems. Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

4,123 citations


"RSSI-Based Indoor Localization With..." refers background or methods in this paper

  • ...AoA systems use an array of antennae to determine the angle, from which the signal propagated [8], [19], [20]....

    [...]

  • ...The most common technologies are: WiFi, Bluetooth, Radio Frequency Identification (RFID), Ultra-Wide Band (UWB) and cellular [8]....

    [...]

  • ...So far, a standard model for indoor localization has not been developed due to obstacles, floor layouts, and reflections of signals that can occur [8]....

    [...]

  • ...other methods need to be used in order to determine a device’s location [8]–[10]....

    [...]

  • ...For instance, there are many more obstacles indoors, including furniture, walls, and people, which can reflect the signals produced, increasing multipath effects [7], [8], [15]....

    [...]

Journal ArticleDOI
TL;DR: The authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity for smart objects, describing activity-, policy-, and process-aware smart objects and demonstrating how the respective architectural abstractions support increasingly complex application.
Abstract: The combination of the Internet and emerging technologies such as nearfield communications, real-time localization, and embedded sensors lets us transform everyday objects into smart objects that can understand and react to their environment. Such objects are building blocks for the Internet of Things and enable novel computing applications. As a step toward design and architectural principles for smart objects, the authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity. In particular, they describe activity-, policy-, and process-aware smart objects and demonstrate how the respective architectural abstractions support increasingly complex application.

1,459 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...These devices are capable of communicating with the IoT to allow for smart buildings to poses a greater amount of control that could never have been achieved before [1], [2]....

    [...]

Journal ArticleDOI
TL;DR: This paper aims to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time ofFlight (RTOF), and received signal strength (RSS) based on technologies that have been proposed in the literature.
Abstract: Indoor localization has recently witnessed an increase in interest, due to the potential wide range of services it can provide by leveraging Internet of Things (IoT), and ubiquitous connectivity. Different techniques, wireless technologies and mechanisms have been proposed in the literature to provide indoor localization services in order to improve the services provided to the users. However, there is a lack of an up-to-date survey paper that incorporates some of the recently proposed accurate and reliable localization systems. In this paper, we aim to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time of flight (RTOF), and received signal strength (RSS); based on technologies, such as WiFi, radio frequency identification device (RFID), ultra wideband (UWB), Bluetooth, and systems that have been proposed in the literature. This paper primarily discusses localization and positioning of human users and their devices. We highlight the strengths of the existing systems proposed in the literature. In contrast with the existing surveys, we also evaluate different systems from the perspective of energy efficiency, availability, cost, reception range, latency, scalability, and tracking accuracy. Rather than comparing the technologies or techniques, we compare the localization systems and summarize their working principle. We also discuss remaining challenges to accurate indoor localization.

1,447 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...to ToA in that it requires devices to have synchronized clocks, but it uses the signal propagation time to multiple receivers to find the absolute signal propagation time [20]....

    [...]

  • ...AoA systems use an array of antennae to determine the angle, from which the signal propagated [8], [19], [20]....

    [...]

  • ...Through the use of synchronized clocks, the signal propagation time between the transmitter and receiver can be determined [19], [20]....

    [...]

Journal ArticleDOI
TL;DR: This work provides a detailed study of BLE fingerprinting using 19 beacons distributed around a ~600 m2 testbed to position a consumer device, and investigates the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency.
Abstract: The complexity of indoor radio propagation has resulted in location-awareness being derived from empirical fingerprinting techniques, where positioning is performed via a previously-constructed radio map, usually of WiFi signals. The recent introduction of the Bluetooth Low Energy (BLE) radio protocol provides new opportunities for indoor location. It supports portable battery-powered beacons that can be easily distributed at low cost, giving it distinct advantages over WiFi. However, its differing use of the radio band brings new challenges too. In this work, we provide a detailed study of BLE fingerprinting using 19 beacons distributed around a $\sim\! 600\ \mbox{m}^2$ testbed to position a consumer device. We demonstrate the high susceptibility of BLE to fast fading, show how to mitigate this, and quantify the true power cost of continuous BLE scanning. We further investigate the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency. We also provide quantitative comparison with WiFi fingerprinting. Our results show advantages to the use of BLE beacons for positioning. For one-shot (push-to-fix) positioning we achieve $30\ \mbox{m}^2$ ), compared to $100\ \mbox{m}^2$ ) and < 8.5 m for an established WiFi network in the same area.

736 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...With the recent emergence of BLE and beacons, it has becomemore feasible to place inexpensive beacons around an environment than it is to rearrange existing hardware and use that for localization [17], [18]....

    [...]