scispace - formally typeset
Search or ask a question
Journal ArticleDOI

RSSI-Based Indoor Localization With the Internet of Things

04 Jun 2018-IEEE Access (IEEE)-Vol. 6, pp 30149-30161
TL;DR: Four wireless technologies for indoor localization: Wi-Fi (IEEE 802.11n-2009 at the 2.4 GHz band), Bluetooth low energy, Zigbee, and long-range wide-area network are compared in terms of localization accuracy and power consumption when IoT devices are used.
Abstract: In the era of smart cities, there are a plethora of applications where the localization of indoor environments is important, from monitoring and tracking in smart buildings to proximity marketing and advertising in shopping malls. The success of these applications is based on the development of a cost-efficient and robust real-time system capable of accurately localizing objects. In most outdoor localization systems, global positioning system (GPS) is used due to its ease of implementation and accuracy up to five meters. However, due to the limited space that comes with performing localization of indoor environments and the large number of obstacles found indoors, GPS is not a suitable option. Hence, accurately and efficiently locating objects is a major challenge in indoor environments. Recent advancements in the Internet of Things (IoT) along with novel wireless technologies can alleviate the problem. Small-size and cost-efficient IoT devices which use wireless protocols can provide an attractive solution. In this paper, we compare four wireless technologies for indoor localization: Wi-Fi (IEEE 802.11n-2009 at the 2.4 GHz band), Bluetooth low energy, Zigbee, and long-range wide-area network. These technologies are compared in terms of localization accuracy and power consumption when IoT devices are used. The received signal strength indicator (RSSI) values from each modality were used and trilateration was performed for localization. The RSSI data set is available online. The experimental results can be used as an indicator in the selection of a wireless technology for an indoor localization system following application requirements.
Citations
More filters
Journal ArticleDOI
TL;DR: The recent advanced algorithms can offer precise positioning behaviour for an unknown environment in indoor locations as well as the traditional ranging parameters in addition to advanced parameters such as channel state information (CSI), reference signal received power (RSRP), andreference signal received quality (RSRQ) are presented.
Abstract: The indoor positioning system (IPS) is becoming increasing important in accurately determining the locations of objects by the utilization of micro-electro-mechanical-systems (MEMS) involving smartphone sensors, embedded sources, mapping localizations, and wireless communication networks. Generally, a global positioning system (GPS) may not be effective in servicing the reality of a complex indoor environment, due to the limitations of the line-of-sight (LoS) path from the satellite. Different techniques have been used in indoor localization services (ILSs) in order to solve particular issues, such as multipath environments, the energy inefficiency of long-term battery usage, intensive labour and the resources of offline information collection and the estimation of accumulated positioning errors. Moreover, advanced algorithms, machine learning, and valuable algorithms have given rise to effective ways in determining indoor locations. This paper presents a comprehensive review on the positioning algorithms for indoors, based on advances reported in radio wave, infrared, visible light, sound, and magnetic field technologies. The traditional ranging parameters in addition to advanced parameters such as channel state information (CSI), reference signal received power (RSRP), and reference signal received quality (RSRQ) are also presented for distance estimation in localization systems. In summary, the recent advanced algorithms can offer precise positioning behaviour for an unknown environment in indoor locations.

75 citations


Cites background from "RSSI-Based Indoor Localization With..."

  • ...68 mW average power consumption) [107], safety, reliability, robustness, and low data rates....

    [...]

  • ...367 mW average power consumption) [107], small size and easy deployment [34,113–116]....

    [...]

  • ...ZigBee technology has a wider range than BLE technology, as such it is able to communicate further by using a mesh network of relay nodes to arrive at a destination [107]....

    [...]

Journal ArticleDOI
TL;DR: A panoramic view of IPSs and localization services with the centrality of IoT is provided and the main concepts and latest positioning methods, techniques, and technologies with IoT remarks are explained.
Abstract: The Internet of Things (IoT), as a pervasive paradigm, is becoming an integral part of the tech industry and academic research in recent years. It forms a ubiquitous heterogeneous network connecting humans and things. The basic premise is acquiring data from the environment with sensors and remote intelligent management via actuators. For IoT service providers, time and place are functional parameters. Whereas most IoT scenarios are in indoor spaces and GPS cannot fully cover them, applying an indoor positioning system (IPS) is necessary. Besides, indoor enabling technologies can leverage the capability of IoT in context-aware services. In this article, we aim to provide a panoramic view of IPSs and localization services with the centrality of IoT. First, we explain the main concepts and review the latest positioning methods, techniques, and technologies with IoT remarks. Then, we discuss technical implementation challenges and open issues with feasible solutions. Finally, we mentioned location-based services (LBSs), real IoT applications, and active vendors in the realm of positioning services. This article provides a real insight into LBSs in IoT for future research.

74 citations

Journal ArticleDOI
TL;DR: In this article, insights into various microlocation-enabling technologies, techniques, and services are provided and how they can accelerate the incorporation of the Internet of Things (IoT) in smart buildings are discussed.
Abstract: Microlocation plays a key role in the transformation of traditional buildings into smart infrastructure Microlocation is the process of locating any entity with a very high accuracy, possibly in centimeters Such technologies require high detection accuracy, energy efficiency, wide reception range, low cost, and availability In this article, we provide insights into various microlocation-enabling technologies, techniques, and services and discuss how they can accelerate the incorporation of the Internet of Things (IoT) in smart buildings We cover the challenges and examine some signal processing filtering techniques such that microlocation-enabling technologies and services can be thoroughly integrated with an IoT-equipped smart building An experiment with Bluetooth Low-Energy (BLE) beacons used for microlocation is also presented

70 citations


Cites background from "RSSI-Based Indoor Localization With..."

  • ...Wireless technologies Microlocation systems can leverage existing wireless infrastructure for microlocation to minimize the cost or may require a specific wireless deployment [1]....

    [...]

  • ...In recent years, BLE technology has grown in popularity, and much more research has been developed in using it for indoor localization [1]–[3]....

    [...]

  • ...RSSI is one of the most commonly used characteristics for indoor localization [1]....

    [...]

Posted Content
TL;DR: A detailed survey of different indoor localization techniques such as Angle of Arrival (AoA), Time of Flight (ToF), return time of flight (RTOF), Received Signal Strength (RSS); based on technologies such as WiFi, Radio Frequency Identification Device (RFID), Ultra Wideband (UWB), Bluetooth and systems that have been proposed in the literature is presented in this article.
Abstract: Indoor localization has recently witnessed an increase in interest, due to the potential wide range of services it can provide by leveraging Internet of Things (IoT), and ubiquitous connectivity. Different techniques, wireless technologies and mechanisms have been proposed in the literature to provide indoor localization services in order to improve the services provided to the users. However, there is a lack of an up-to-date survey paper that incorporates some of the recently proposed accurate and reliable localization systems. In this paper, we aim to provide a detailed survey of different indoor localization techniques such as Angle of Arrival (AoA), Time of Flight (ToF), Return Time of Flight (RTOF), Received Signal Strength (RSS); based on technologies such as WiFi, Radio Frequency Identification Device (RFID), Ultra Wideband (UWB), Bluetooth and systems that have been proposed in the literature. The paper primarily discusses localization and positioning of human users and their devices. We highlight the strengths of the existing systems proposed in the literature. In contrast with the existing surveys, we also evaluate different systems from the perspective of energy efficiency, availability, cost, reception range, latency, scalability and tracking accuracy. Rather than comparing the technologies or techniques, we compare the localization systems and summarize their working principle. We also discuss remaining challenges to accurate indoor localization.

69 citations

Journal ArticleDOI
TL;DR: In this paper, a survey of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance.
Abstract: In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localization techniques are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of dataset collection and open-source datasets. To provide good direction for future research, we discuss the current challenges and potential solutions related to ML-based indoor localization systems.

62 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.
Abstract: The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different and heterogeneous end systems, while providing open access to selected subsets of data for the development of a plethora of digital services. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we focus specifically to an urban IoT system that, while still being quite a broad category, are characterized by their specific application domain. Urban IoTs, in fact, are designed to support the Smart City vision, which aims at exploiting the most advanced communication technologies to support added-value services for the administration of the city and for the citizens. This paper hence provides a comprehensive survey of the enabling technologies, protocols, and architecture for an urban IoT. Furthermore, the paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.

4,335 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...These devices are capable of communicating with the IoT to allow for smart buildings to poses a greater amount of control that could never have been achieved before [1], [2]....

    [...]

Journal ArticleDOI
01 Nov 2007
TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.
Abstract: Wireless indoor positioning systems have become very popular in recent years. These systems have been successfully used in many applications such as asset tracking and inventory management. This paper provides an overview of the existing wireless indoor positioning solutions and attempts to classify different techniques and systems. Three typical location estimation schemes of triangulation, scene analysis, and proximity are analyzed. We also discuss location fingerprinting in detail since it is used in most current system or solutions. We then examine a set of properties by which location systems are evaluated, and apply this evaluation method to survey a number of existing systems. Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

4,123 citations


"RSSI-Based Indoor Localization With..." refers background or methods in this paper

  • ...AoA systems use an array of antennae to determine the angle, from which the signal propagated [8], [19], [20]....

    [...]

  • ...The most common technologies are: WiFi, Bluetooth, Radio Frequency Identification (RFID), Ultra-Wide Band (UWB) and cellular [8]....

    [...]

  • ...So far, a standard model for indoor localization has not been developed due to obstacles, floor layouts, and reflections of signals that can occur [8]....

    [...]

  • ...other methods need to be used in order to determine a device’s location [8]–[10]....

    [...]

  • ...For instance, there are many more obstacles indoors, including furniture, walls, and people, which can reflect the signals produced, increasing multipath effects [7], [8], [15]....

    [...]

Journal ArticleDOI
TL;DR: The authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity for smart objects, describing activity-, policy-, and process-aware smart objects and demonstrating how the respective architectural abstractions support increasingly complex application.
Abstract: The combination of the Internet and emerging technologies such as nearfield communications, real-time localization, and embedded sensors lets us transform everyday objects into smart objects that can understand and react to their environment. Such objects are building blocks for the Internet of Things and enable novel computing applications. As a step toward design and architectural principles for smart objects, the authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity. In particular, they describe activity-, policy-, and process-aware smart objects and demonstrate how the respective architectural abstractions support increasingly complex application.

1,459 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...These devices are capable of communicating with the IoT to allow for smart buildings to poses a greater amount of control that could never have been achieved before [1], [2]....

    [...]

Journal ArticleDOI
TL;DR: This paper aims to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time ofFlight (RTOF), and received signal strength (RSS) based on technologies that have been proposed in the literature.
Abstract: Indoor localization has recently witnessed an increase in interest, due to the potential wide range of services it can provide by leveraging Internet of Things (IoT), and ubiquitous connectivity. Different techniques, wireless technologies and mechanisms have been proposed in the literature to provide indoor localization services in order to improve the services provided to the users. However, there is a lack of an up-to-date survey paper that incorporates some of the recently proposed accurate and reliable localization systems. In this paper, we aim to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time of flight (RTOF), and received signal strength (RSS); based on technologies, such as WiFi, radio frequency identification device (RFID), ultra wideband (UWB), Bluetooth, and systems that have been proposed in the literature. This paper primarily discusses localization and positioning of human users and their devices. We highlight the strengths of the existing systems proposed in the literature. In contrast with the existing surveys, we also evaluate different systems from the perspective of energy efficiency, availability, cost, reception range, latency, scalability, and tracking accuracy. Rather than comparing the technologies or techniques, we compare the localization systems and summarize their working principle. We also discuss remaining challenges to accurate indoor localization.

1,447 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...to ToA in that it requires devices to have synchronized clocks, but it uses the signal propagation time to multiple receivers to find the absolute signal propagation time [20]....

    [...]

  • ...AoA systems use an array of antennae to determine the angle, from which the signal propagated [8], [19], [20]....

    [...]

  • ...Through the use of synchronized clocks, the signal propagation time between the transmitter and receiver can be determined [19], [20]....

    [...]

Journal ArticleDOI
TL;DR: This work provides a detailed study of BLE fingerprinting using 19 beacons distributed around a ~600 m2 testbed to position a consumer device, and investigates the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency.
Abstract: The complexity of indoor radio propagation has resulted in location-awareness being derived from empirical fingerprinting techniques, where positioning is performed via a previously-constructed radio map, usually of WiFi signals. The recent introduction of the Bluetooth Low Energy (BLE) radio protocol provides new opportunities for indoor location. It supports portable battery-powered beacons that can be easily distributed at low cost, giving it distinct advantages over WiFi. However, its differing use of the radio band brings new challenges too. In this work, we provide a detailed study of BLE fingerprinting using 19 beacons distributed around a $\sim\! 600\ \mbox{m}^2$ testbed to position a consumer device. We demonstrate the high susceptibility of BLE to fast fading, show how to mitigate this, and quantify the true power cost of continuous BLE scanning. We further investigate the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency. We also provide quantitative comparison with WiFi fingerprinting. Our results show advantages to the use of BLE beacons for positioning. For one-shot (push-to-fix) positioning we achieve $30\ \mbox{m}^2$ ), compared to $100\ \mbox{m}^2$ ) and < 8.5 m for an established WiFi network in the same area.

736 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...With the recent emergence of BLE and beacons, it has becomemore feasible to place inexpensive beacons around an environment than it is to rearrange existing hardware and use that for localization [17], [18]....

    [...]